Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography.
نویسندگان
چکیده
Electron tomography is currently the only method that allows the direct three-dimensional visualization of macromolecules in an unperturbed cellular context. In principle, tomography should enable the identification and localization of the major macromolecular complexes within intact bacteria, embedded in amorphous ice. In an effort to optimize conditions for recording data that would bring us close to the theoretical limits, we present here a comparison of the dose tolerance of Caulobacter crescentus cells embedded in amorphous ice at liquid helium versus liquid nitrogen temperature. The inner and outer cell membranes, and the periodic structure of the S-layer of this Gram-negative bacterium provide ideal features to monitor changes in contrast and order as a function of dose. The loss of order in the S-layer occurs at comparable doses at helium and nitrogen temperatures. Macroscopic bubbling within the cell and the plastic support develops at both temperatures, but more slowly at helium temperature. The texture of the bubbles is finer in initial stages at helium temperature, giving an impression of contrast reversal in some parts of the specimen. Bubbles evolve differently in different organelles, presumably a consequence of their different chemical composition and mechanical properties. Finally, the amorphous ice "flows" at helium temperature, causing changes in the relative positions of markers within the specimen and distorting the cells. We conclude that for cryo-electron tomography of whole cells liquid nitrogen temperature provides better overall data quality.
منابع مشابه
A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography.
The principal resolution limitation in electron cryomicroscopy of frozen-hydrated biological samples is radiation damage. It has long been hoped that cooling such samples to just a few kelvins with liquid helium would slow this damage and allow statistically better-defined images to be recorded. A new "G2 Polara" microscope from FEI Company was used to image various biological samples cooled by...
متن کاملHelium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions
We have investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Tra...
متن کاملInvestigating The Role of Helium Bag On Electron Contamination Removal Using Beam NRC
Introduction: Several studies have discussed to the electron contamination caused by the air column between the head of linac and patient for photon beams. Since it is not possible to measure the electron contamination with practical dosimetry, the Monte Carlo technique is an appropriate and accurate choice to calculate particle flounce in radiation therapy. The purpose of t...
متن کاملEvaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line
In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...
متن کاملEvaluation of the Effects of Different Filters and Helium Bag on the Reduction of Electron Contamination in Photon Beam of Neptun Linac
Introduction: Skin sparing is one of the most desirable characteristics of high energy photon beams. However, the photons emerging from the target of linacs are contaminated by secondary electrons as a result of their interactions with air, collimators, flattening filter and any other objects in their path. This phenomenon tends to increase the skin dose received b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of structural biology
دوره 152 3 شماره
صفحات -
تاریخ انتشار 2005