Mechanosensitive N-methyl-D-aspartate receptors contribute to sensory activation in the rat renal pelvis.
نویسندگان
چکیده
The N-methyl-D-aspartate (NMDA) subtype of the ionotropic glutamate receptor is found in the periphery. The present study tested whether NMDA receptors (NMDARs) are present in the ends of afferent renal nerves in the renal pelvis, an area concerned mainly with transmitting sensation and the to reflex regulation of body fluid. The main NMDAR subunit, NMDAzeta1, was found to be more abundant in the renal pelvis than the renal cortex and medulla, and was mainly colocalized with the pan-neuronal marker PGP9.5 or the sensory nerve marker, the neurokinin-1 receptor. However, NMDAzeta1 mRNA was undetectable, suggesting that it might be synthesized outside the renal pelvis. Intrarenal arterial administration of the specific ion channel blocker (+)-MK-801, but not the inactive enantiomer (-)-MK-801, decreased urine output and sodium excretion. High doses of (+)-MK-801 also caused regional vasoconstriction in the renal cortex, as determined by laser-Doppler flowmetry. Intrapelvic administration of the NMDAR ligand D-serine caused a dose-dependent increase in substance P (SP) release and afferent renal nerve activity, but had no effect on arterial pressure. The D-serine-induced sensory activation and SP release were abrogated by (+)-MK-801, the SP receptor blocker L-703,606, or dorsal rhizotomy. Increasing intrapelvic pressure resulted in an increase in afferent renal nerve activity and a diuretic/natriuretic response. Interestingly, these effects were attenuated by prior administration of (+)-MK-801. These results indicate that NMDAR-positive sensory nerves are present in the renal pelvis and contribute to the renorenal reflex control of body fluid.
منابع مشابه
The effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats
Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...
متن کاملThe neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β
Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen ...
متن کاملTransient receptor potential vanilloid type 1 channels act as mechanoreceptors and cause substance P release and sensory activation in rat kidneys.
Stimulation of capsaicin receptors results in an increase in afferent renal nerve activity (ARNA), but it is unclear how capsaicin contributes to sensory activation intrarenally. Here, we studied the relationships between capsaicin receptor activation, substance P (SP) release, and the sensory response in the rat renal pelvis. Immunoblots showed that one of the capsaicin receptors, transient re...
متن کاملAmelioration of Pentylenetetrazole-Induced Seizures by Modulators of Sigma, N-Methyl-D-Aspartate, and Ryanodine Receptors in Mice
Background: Sigma receptors, N-methyl-D-aspartate (NMDA) antagonist, and modulators of intracellular calcium may be useful for seizure control. Therefore, we aimed to evaluate the antiepileptic effects of opipramol, a sigma receptor agonist, against pentylenetetrazole (PTZ)-induced seizures in mice and assess ketamine and caffeine interaction with the antiepileptic effects of opipramol.Methods:...
متن کاملNitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation.
UNLABELLED Nerve terminals containing neuronal nitric oxide synthase (nNOS) are localized in the renal pelvic wall where the sensory nerves containing substance P and calcitonin gene-related peptide (CGRP) are found. We examined whether nNOS is colocalized with substance P and CGRP. All renal pelvic nerve fibers that contained nNOS-like immunoreactivity (-LI) also contained substance P-LI and C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 52 5 شماره
صفحات -
تاریخ انتشار 2008