Preferential Control of Basal Dendritic Protrusions by EphB2
نویسندگان
چکیده
The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.
منابع مشابه
EphB maintains dendritic spine morphology through focal adhesion kinase.
Editor's Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see The postsynaptic components of excita-tory synapses are located a...
متن کاملIntracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors.
The majority of mature excitatory synapses in the CNS are found on dendritic spines and contain AMPA- and NMDA-type glutamate receptors apposed to presynaptic specializations. EphB receptor tyrosine kinase signaling has been implicated in both NMDA-type glutamate receptor clustering and dendritic spine formation, but it remains unclear whether EphB plays a broader role in presynaptic and postsy...
متن کاملOptogenetic activation of EphB2 receptor in dendrites induced actin polymerization by activating Arg kinase
Erythropoietin-producing hepatocellular (Eph) receptors regulate a wide array of developmental processes by responding to cell-cell contacts. EphB2 is well-expressed in the brain and known to be important for dendritic spine development, as well as for the maintenance of the synapses, although the mechanisms of these functions have not been fully understood. Here we studied EphB2's functions in...
متن کاملExpression of the Receptor Tyrosine Kinase EphB2 on Dendritic Cells Is Modulated by Toll-Like Receptor Ligation but Is Not Required for T Cell Activation
The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting ce...
متن کاملRelease of full-length EphB2 receptors from hippocampal neurons to cocultured glial cells.
Glial cells are known to actively participate in neuronal development by shaping neuronal connections through axon pruning and by controlling dendritic spine morphology. These functions may in part be mediated by engulfment of neuronal structures and trans-endocytosis of neuronal material into glial cells. These processes are not well understood, and the molecular components that mediate these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011