Self-similar Singularity of a 1d Model for the 3d Axisymmetric Euler Equations

نویسندگان

  • THOMAS Y. HOU
  • PENGFEI LIU
چکیده

We investigate the self-similar singularity of a 1D model for the 3D axisymmetric Euler equations, which approximates the dynamics of the Euler equations on the solid boundary of a cylindrical domain. We prove the existence of a discrete family of self-similar profiles for this model and analyze their far-field properties. The self-similar profiles we find are consistent with direct simulation of the model and enjoy some stability property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Finite-time Blowup of a 1d Model for the 3d Axisymmetric Euler Equations

In connection with the recent proposal for possible singularity formation at the boundary for solutions of 3d axi-symmetric incompressible Euler’s equations (Luo and Hou, 2014a), we study models for the dynamics at the boundary and show that they exhibit a finite-time blow-up from smooth data.

متن کامل

On Finite Time Singularity and Global Regularity of an Axisymmetric Model for the 3D Euler Equations

We investigate the large time behavior of an axisymmetric model for the 3D Euler equations. In [22], Hou and Lei proposed a 3D model for the axisymmetric incompressible Euler and Navier-Stokes equations with swirl. This model shares many properties of the 3D incompressible Euler and Navier-Stokes equations. The main difference between the 3D model of Hou and Lei and the reformulated 3D Euler an...

متن کامل

On the Finite-time Blowup of a 1d Model for the 3d Incompressible Euler Equations

We study a 1D model for the 3D incompressible Euler equations in axisymmetric geometries, which can be viewed as a local approximation to the Euler equations near the solid boundary of a cylindrical domain. We prove the local well-posedness of the model in spaces of zero-mean functions, and study the potential formation of a finite-time singularity under certain convexity conditions for the vel...

متن کامل

Toward the Finite-Time Blowup of the 3D Axisymmetric Euler Equations: A Numerical Investigation

Whether the 3D incompressible Euler equations can develop a singularity in finite time from smooth initial data is one of the most challenging problems in mathematical fluid dynamics. This work attempts to provide an affirmative answer to this long-standing open question from a numerical point of view, by presenting a class of potentially singular solutions to the Euler equations computed in ax...

متن کامل

Finite Time Blow-up of a 3D Model for Incompressible Euler Equations

We investigate the role of convection on its large time behavior of 3D incompressible Euler equations. In [15], we constructed a new 3D model by neglecting the convection term from the reformulated axisymmetric Navier-Stokes equations. This model preserves almost all the properties of the full Navier-Stokes equations, including an energy identity for smooth solutions. The numerical evidence pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014