Exofacial epitope-tagged glucose transporter chimeras reveal COOH- terminal sequences governing cellular localization
نویسندگان
چکیده
The insulin-regulated adipocyte/skeletal muscle glucose transporter (GLUT4) displays a characteristic steady-state intracellular localization under basal conditions, whereas the erythrocyte/brain transporter isoform (GLUT1) distributes mostly to the cell surface. To identify possible structural elements in these transporter proteins that determine their cellular localization, GLUT1/GLUT4 chimera cDNA constructs that contain the hemagglutinin epitope YPYDVPDYA (HA) in their major exofacial loops were engineered. Binding of monoclonal anti-HA antibody to non-permeabilized COS-7 cells expressing HA-tagged transporter chimeras revealed that expression of transporters on the cell surface was strongly influenced by their cytoplasmic COOH-terminal domain. This method also revealed a less marked, but significant effect on cellular localization of amino acid residues between transporter exofacial and middle loops. The subcellular distribution of expressed chimeras was confirmed by immunofluorescence microscopy of permeabilized COS-7 cells. Thus, HA-tagged native GLUT4 was concentrated in the perinuclear region, whereas a chimera containing the COOH-terminal 29 residues of GLUT1 substituted onto GLUT4 distributed to the plasma membrane, as did native GLUT1. Furthermore, a chimera composed of GLUT1 with a GLUT4 COOH-terminal 30-residue substitution exhibited a predominantly intracellular localization. Similar data was obtained in CHO cells stably expressing these chimeras. Taken together, these results define the unique COOH-terminal cytoplasmic sequences of the GLUT1 and GLUT4 glucose transporters as important determinants of cellular localization in COS-7 and CHO cells.
منابع مشابه
Exofacial Epitope-tagged Glucose Transporter Chimeras Reveal COOH-Terminal Sequences Goverl g Cellular Localization
The insulin-regulated adipocyte/skeletal muscle glucose transporter (GLUT4) displays a characteristic steady-state intracellular localization under basal conditions, whereas the erythrocyte/brain transporter isoform (GLUTI) distributes mostly to the cell surface. To identify possible structural elements in these transporter proteins that determine their cellular localization, GLUT1/GLUT4 chimer...
متن کاملA double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal
The unique COOH-terminal 30-amino acid region of the adipocyte/skeletal muscle glucose transporter (GLUT4) appears to be a major structural determinant of this protein's perinuclear localization, from where it is redistributed to the cell surface in response to insulin. To test whether an underlying mechanism of this domain's function involves glucose transporter endocytosis rates, transfected ...
متن کاملMolecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing...
متن کاملIdentification of the carboxy terminus as important for the isoform- specific subcellular targeting of glucose transporter proteins
Differential trafficking of glucose transporters contributes significantly to the establishment of a cell's capacity for hormone-regulatable hexose uptake. In the true insulin-sensitive peripheral target tissues, muscle and adipose, the transporter isoform GLUT1 residues on the cell surface and interior of the cell whereas the highly homologous isoform GLUT4 displays virtually exclusive intrace...
متن کاملInsulin-sensitive targeting of the GLUT4 glucose transporter in L6 myoblasts is conferred by its COOH-terminal cytoplasmic tail
The GLUT4 glucose transporter appears to be targeted to a unique insulin-sensitive intracellular membrane compartment in fat and muscle cells. Insulin stimulates glucose transport in these cell types by mediating the partial redistribution of GLUT4 from this intracellular compartment to the plasma membrane. The structural basis for the unique targeting behavior of GLUT4 was investigated in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 123 شماره
صفحات -
تاریخ انتشار 1993