Convergence of Adaptive Markov Chain Monte Carlo Algorithms

نویسندگان

  • Yan Bai
  • Jeffrey S. Rosenthal
چکیده

In the thesis, we study ergodicity of adaptive Markov Chain Monte Carlo methods (MCMC) based on two conditions (Diminishing Adaptation and Containment which together imply ergodicity), explain the advantages of adaptive MCMC, and apply the theoretical result for some applications. First we show several facts: 1. Diminishing Adaptation alone may not guarantee ergodicity; 2. Containment is not necessary for ergodicity; 3. under some additional condition, Containment is necessary for ergodicity. Since Diminishing Adaptation is relatively easy to check and Containment is abstract, we focus on the sufficient conditions of Containment. In order to study Containment, we consider the quantitative bounds of the distance between samplers and targets in total variation norm. From early results, the quantitative bounds are connected with nested drift conditions for polynomial rates of convergence. For ergodicity of adaptive MCMC, assuming that all samplers simultaneously satisfy nested polynomial drift conditions, we find that either when the number of nested drift conditions is greater than or equal to two, or when the number of drift conditions with some specific form is one, the adaptive MCMC algorithm is ergodic. For adaptive MCMC algorithm with Markovian adaptation, the algorithm satisfying simultaneous polynomial ergodicity is ergodic without those restrictions. We also discuss some recent results related to this topic. Second we consider ergodicity of certain adaptive Markov Chain Monte Carlo algorithms for multidimensional target distributions, in particular, adaptive Metropolis and adaptive Metropolis-within-Gibbs algorithms. We derive various sufficient conditions to ensure Containment, and connect the convergence rates of algorithms with the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatically Tuned General-Purpose MCMC via New Adaptive Diagnostics

Adaptive Markov Chain Monte Carlo (MCMC) algorithms attempt to ‘learn’ from the results of past iterations so the Markov chain can converge quicker. Unfortunately, adaptive MCMC algorithms are no longer Markovian, so their convergence is difficult to guarantee. In this paper, we develop new diagnostics to determine whether the adaption is still improving the convergence. We present an algorithm...

متن کامل

Markov Chain Monte Carlo Algorithms: Theory and Practice

We describe the importance and widespread use of Markov chain Monte Carlo (MCMC) algorithms, with an emphasis on the roles in which theoretical analysis can help with their practical implementation. In particular, we discuss how to achieve rigorous quantitative bounds on convergence to stationarity using the coupling method together with drift and minorisation conditions. We also discuss recent...

متن کامل

On the Containment Condition for Adaptive Markov Chain Monte Carlo Algorithms

This paper considers ergodicity properties of certain adaptive Markov chain Monte Carlo (MCMC) algorithms for multidimensional target distributions, in particular Adaptive Metropolis and Adaptive Metropoliswithin-Gibbs. It was previously shown by Roberts and Rosenthal (2007) that Diminishing Adaptation and Containment imply ergodicity of adaptive MCMC. We derive various sufficient conditions to...

متن کامل

On the convergence rates of some adaptive Markov chain Monte Carlo algorithms

This paper studies the mixing time of certain adaptive Markov Chain Monte Carlo algorithms. Under some regularity conditions, we show that the convergence rate of Importance Resampling MCMC (IRMCMC) algorithm, measured in terms of the total variation distance is O(n−1), and by means of an example, we establish that in general, this algorithm does not converge at a faster rate. We also study the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009