Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis.
نویسندگان
چکیده
The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is a major regulator of adipose tissue growth and differentiation. We recently demonstrated that human protein tyrosine phosphatase (PTP) L1, a large cytoplasmic phosphatase also known as PTP-BAS/PTPN13/PTP-1E, is a negative regulator of IGF-1R/IRS-1/Akt pathway in breast cancer cells. This triggered us to investigate the potential role of PTPL1 in adipogenesis. To evaluate the implication of PTP-BL, the mouse orthologue of PTPL1, in adipose tissue biology, we analyzed PTP-BL mRNA expression in adipose tissue in vivo and during proliferation and differentiation of 3T3-L1 pre-adipocytes. To elucidate the role of PTP-BL and of its catalytic activity during adipogenesis we use siRNA techniques in 3T3-L1 pre-adipocytes, and mouse embryonic fibroblasts that lack wildtype PTP-BL and instead express a variant without the PTP domain (Delta P/Delta P MEFs). Here we show that PTP-BL is strongly expressed in white adipose tissue and that PTP-BL transcript and protein levels increase during proliferation and differentiation of 3T3-L1 pre-adipocytes. Strikingly, knockdown of PTP-BL expression in 3T3-L1 adipocytes caused a dramatic decrease in adipogenic gene expression levels (PPAR gamma, aP2) and lipid accumulation but did not interfere with the insulin/Akt pathway. Delta P/Delta P MEFs differentiate into the adipogenic lineage as efficiently as wildtype MEFs. However, when expression of either PTP-BL or PTP-BL Delta P was inhibited a dramatic reduction in the number of MEF-derived adipocytes was observed. These findings demonstrate a key role for PTP-BL in 3T3-L1 and MEF-derived adipocyte differentiation that is independent of its enzymatic activity.
منابع مشابه
The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis.
PTP-BL is a highly modular protein tyrosine phosphatase of unknown function. It consists of an N-terminal FERM domain, five PDZ domains, and a C-terminally located tyrosine phosphatase domain. Here we show that PTP-BL is involved in the regulation of cytokinesis. We demonstrate localization of endogenous PTP-BL at the centrosomes during inter- and metaphase and at the spindle midzone during ana...
متن کاملMild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity.
Mouse PTP-BL is a large, nontransmembrane protein tyrosine phosphatase of unclear physiological function that consists of a KIND domain, a FERM domain, five PDZ domains, and a COOH-terminal catalytic PTP domain. PTP-BL and its human ortholog PTP-BAS have been proposed to play a role in the regulation of microfilament dynamics, cytokinesis, apoptosis, and neurite outgrowth. To investigate the bi...
متن کاملNo evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis.
Recently, one of the PDZ domains in the cytosolic protein-tyrosine phosphatase Fas-associated phosphatase-1 (FAP-1)/protein-tyrosine phosphatase-BAS (PTP-BAS) was shown to interact with the carboxyl-terminal tS-L-V peptide of the human Fas receptor (Sato, T., Irie, S., Kitada, S., and Reed, J. C. (1995) Science 268, 411-415), suggesting a role for protein (de)phosphorylation in Fas signaling. T...
متن کاملThe gene (PTPN13) encoding the protein tyrosine phosphatase PTP-BL/PTP-BAS is located in mouse chromosome region 5E/F and human chromosome region 4q21.
Both mouse and human genomic clones were isolated for protein tyrosine phosphatase PTP-BL/PTP-BAS (HGM approved gene symbols Ptpn13 and PTPN13, respectively). Using these clones as a probe, PTPN13 was assigned to human chromosome region 4q21 and mouse chromosome region 5E/F by fluorescence in situ hybridization (FISH).
متن کاملProtein tyrosine phosphatase profiling analysis of HIB-1B cells during brown adipogenesis.
A number of evidence have been accumulated that the regulation of reversible tyrosine phosphorylation, which can be regulated by the combinatorial activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), plays crucial roles in various biological processes including differentiation. There are a total of 107 PTP genes in the human genome, collectively referred to as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of biochemistry & cell biology
دوره 41 11 شماره
صفحات -
تاریخ انتشار 2009