How habitat-modifying organisms structure the food web of two coastal ecosystems.

نویسندگان

  • Els M van der Zee
  • Christine Angelini
  • Laura L Govers
  • Marjolijn J A Christianen
  • Andrew H Altieri
  • Karin J van der Reijden
  • Brian R Silliman
  • Johan van de Koppel
  • Matthijs van der Geest
  • Jan A van Gils
  • Henk W van der Veer
  • Theunis Piersma
  • Peter C de Ruiter
  • Han Olff
  • Tjisse van der Heide
چکیده

The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental controls on food web regimes: A fluvial perspective

Because food web regimes control the biomass of primary producers (e.g., plants or algae), intermediate consumers (e.g., invertebrates), and large top predators (tuna, killer whales), they are of societal as well as academic interest. Some controls over food web regimes may be internal, but many are mediated by conditions or fluxes over large spatial scales. To understand locally observed chang...

متن کامل

A review of the biological characteristics of suckermouth catfish (Hypostomus plecostomus Linnaeus, 1758) and its impacts on aquatic ecosystems

Following the report of suckermouth catfish (Hypostomus plecostomus) from Anzali Wetland, the present study was conducted to review the biological and ecological characteristics of this species and its effects on aquatic ecosystems. A literature review revealed that the suckermouth catfish is native to South America and one of the most popular species in the ornamental fish industry. This speci...

متن کامل

Quantitative approaches to the analysis of stable isotope food web data.

Ecologists use stable isotopes (delta13C, delta15N) to better understand food webs and explore trophic interactions in ecosystems. Traditionally, delta13C vs. delta15N bi-plots have been used to describe food web structure for a single time period or ecosystem. Comparisons of food webs across time and space are increasing, but development of statistical approaches for testing hypotheses regardi...

متن کامل

Incorporating food web dynamics into ecological restoration: a modeling approach for river ecosystems.

Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning, we constructed a m...

متن کامل

Food-Web Structure of Seagrass Communities across Different Spatial Scales and Human Impacts

Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 283 1826  شماره 

صفحات  -

تاریخ انتشار 2016