Learning to Predict from Textual Data
نویسندگان
چکیده
Given a current news event, we tackle the problem of generating plausible predictions of future events it might cause. We present a new methodology for modeling and predicting such future news events using machine learning and data mining techniques. Our Pundit algorithm generalizes examples of causality pairs to infer a causality predictor. To obtain precisely labeled causality examples, we mine 150 years of news articles and apply semantic natural language modeling techniques to headlines containing certain predefined causality patterns. For generalization, the model uses a vast number of world knowledge ontologies. Empirical evaluation on real news articles shows that our Pundit algorithm performs as well as non-expert humans.
منابع مشابه
The Effect of Multimedia Glosses on L2 Listening Comprehension
The present study examined the effect of multimedia glosses on foreign language listening comprehension. To this end, 94 male students studying at Rasa English Institute in Tehran were selected for the treatment. The participants consisted of three groups, and each group was randomly assigned to one of the following treatment conditions: textual, pictorial, and textual-pictorial glossing....
متن کاملارائه مدلی برای استخراج اطلاعات از مستندات متنی، مبتنی بر متنکاوی در حوزه یادگیری الکترونیکی
As computer networks become the backbones of science and economy, enormous quantities documents become available. So, for extracting useful information from textual data, text mining techniques have been used. Text Mining has become an important research area that discoveries unknown information, facts or new hypotheses by automatically extracting information from different written documents. T...
متن کاملA Comparative Analysis of the Effect of Visual and Textual Information on the Health Information Perception of High School Girl Students in Tehran
Purpose: Information and information sources can be divided into three broad categories according to their nature or type: textual information (book, journal article, conference paper, dissertation, newspaper, etc.), visual information (infographic, photo, Cartoons, films, etc.) and audiovisual information. The purpose of this study is to determine the effect of reading textual information in c...
متن کاملThe Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning
In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...
متن کاملALTN: Word Alignment Features for Cross-lingual Textual Entailment
We present a supervised learning approach to cross-lingual textual entailment that explores statistical word alignment models to predict entailment relations between sentences written in different languages. Our approach is language independent, and was used to participate in the CLTE task (Task#8) organized within Semeval 2013 (Negri et al., 2013). The four runs submitted, one for each languag...
متن کاملLearning Causality from Textual Data
We present a new methodology for modeling and predicting future events through machine learning and data mining techniques from textual data. Modeled events span across varied domains including politics, economy and society. The model employs human-style prediction techniques such as causality inference, generalization and projection based on past experience. For this purpose, we use news archi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 45 شماره
صفحات -
تاریخ انتشار 2012