A mass, energy, vorticity, and potential enstrophy conserving lateral fluid-land boundary scheme for the shallow water equations

نویسندگان

  • G. S. Ketefian
  • M. Z. Jacobson
چکیده

A numerical scheme for treating fluid–land boundaries in inviscid shallow water flows is derived that conserves the domain-summed mass, energy, vorticity, and potential enstrophy in domains with arbitrarily shaped boundaries. The boundary scheme is derived from a previous scheme that conserves all four domain-summed quantities only in periodic domains without boundaries. It consists of a method for including land in the model along with evolution equations for the vorticity and extrapolation formulas for the depth at fluid–land boundaries. Proofs of mass, energy, vorticity, and potential enstrophy conservation are given. Numerical simulations are carried out demonstrating the conservation properties and accuracy of the boundary scheme for inviscid flows and comparing its performance with that of four alternative boundary schemes. The first of these alternatives extrapolates or finite-differences the velocity to obtain the vorticity at boundaries; the second enforces the free-slip boundary condition; the third enforces the super-slip condition; and the fourth enforces the no-slip condition. Comparisons of the conservation properties demonstrate that the new scheme is the only one of the five that conserves all four domain-summed quantities, and it is the only one that both prevents a spurious energy cascade to the smallest resolved scales and maintains the correct flow orientation with respect to an external forcing. Comparisons of the accuracy demonstrate that the new scheme generates vorticity fields that have smaller errors than those generated by any of the alternative schemes, and it generates depth and velocity fields that have errors about equal to those in the fields generated by the most accurate alternative scheme. 2008 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mass, energy, vorticity, and potential enstrophy conserving lateral boundary scheme for the shallow water equations using piecewise linear boundary approximations

A numerical scheme for treating fluid–land boundaries in inviscid shallow water flows is derived that approximates boundary profiles with piecewise linear segments (shaved cells) while conserving the domain-summed mass, energy, vorticity, and potential enstrophy. The new scheme is a generalization of a previous scheme that also conserves these quantities but uses stairsteps to approximate bound...

متن کامل

A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid

Using the shallow water equations, a numerical framework on a spherical geodesic grid that conserves domainintegrated mass, potential vorticity, potential enstrophy, and total energy is developed. The numerical scheme is equally applicable to hexagonal grids on a plane and to spherical geodesic grids. This new numerical scheme is compared to its predecessor and it is shown that the new scheme d...

متن کامل

An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force

We present an energyand potential enstrophy-conserving scheme for the non-traditional shallow water equations that include the complete Coriolis force and topography. These integral conservation properties follow from material conservation of potential vorticity in the continuous shallow water equations. The latter property cannot be preserved by a discretisation on a fixed Eulerian grid, but e...

متن کامل

Analysis of Discrete Shallow-Water Models on Geodesic Delaunay Grids with C-Type Staggering

The properties of C-grid staggered spatial discretizations of the shallow-water equations on regular Delaunay triangulations on the sphere are analyzed. Mass-conserving schemes that also conserve either energy or potential enstrophy are derived, and their features are analogous to those of the C-grid staggered schemes on quadrilateral grids. Results of numerical tests carried out with explicit ...

متن کامل

A general method for conserving quantities related to potential vorticity in numerical models

Nambu proposed a generalization of Hamiltonian dynamics in the form dF/dt = {F,H,Z}, which conserves H and Z because the Nambu bracket {F,H,Z} is completely antisymmetric. The equations of fluid dynamics fit Nambu’s form with H the energy and Z a quantity related to potential vorticity. This formulation makes it easy, in principle, to construct numerical fluidmodels that conserve analogues of H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009