The Integration of Syntax and Semantic Plausibility in a Wide-Coverage Model of Human Sentence Processing
نویسندگان
چکیده
Models of human sentence processing have paid much attention to three key characteristics of the sentence processor: Its robust and accurate processing of unseen input (wide coverage), its immediate, incremental interpretation of partial input and its sensitivity to structural frequencies in previous language experience. In this thesis, we propose a model of human sentence processing that accounts for these three characteristics and also models a fourth key characteristic, namely the influence of semantic plausibility on sentence processing. The precondition for such a sentence processing model is a general model of human plausibility intuitions. We therefore begin by presenting a probabilistic model of the plausibility of verb-argument relations, which we estimate as the probability of encountering a verb-argument pair in the relation specified by a thematic role in a role-annotated training corpus. This model faces a significant sparse data problem, which we alleviate by combining two orthogonal smoothing methods. We show that the smoothed model’s predictions are significantly correlated to human plausibility judgements for a range of test sets. We also demonstrate that our semantic plausibility model outperforms selectional preference models and a standard role labeller, which solve tasks from computational linguistics that are related to the prediction of human judgements. We then integrate this semantic plausibility model with an incremental, widecoverage, probabilistic model of syntactic processing to form the Syntax/Semantics (SynSem) Integration model of sentence processing. The SynSem-Integration model combines preferences for candidate syntactic structures from two sources: Syntactic probability estimates from a probabilistic parser and our semantic plausibility model’s estimates of the verb-argument relations in each syntactic analysis. The model uses these preferences to determine a globally preferred structure and predicts difficulty in human sentence processing either if syntactic and semantic preferences conflict, or if the interpretation of the preferred analysis changes non-monotonically. In a thorough evaluation against the patterns of processing difficulty found for four ambiguity phenomena in eight reading-time studies, we demonstrate that the SynSem-Integration model reliably predicts human reading time behaviour.
منابع مشابه
A Probabilistic Model of Semantic Plausibility in Sentence Processing
Experimental research shows that human sentence processing uses information from different levels of linguistic analysis, for example, lexical and syntactic preferences as well as semantic plausibility. Existing computational models of human sentence processing, however, have focused primarily on lexico-syntactic factors. Those models that do account for semantic plausibility effects lack a gen...
متن کاملFirst Language Activation during Second Language Lexical Processing in a Sentential Context
Lexicalization-patterns, the way words are mapped onto concepts, differ from one language to another. This study investigated the influence of first language (L1) lexicalization patterns on the processing of second language (L2) words in sentential contexts by both less proficient and more proficient Persian learners of English. The focus was on cases where two different senses of a polys...
متن کاملNeural bases of event knowledge and syntax integration in comprehension of complex sentences.
Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest tha...
متن کاملA computational model of discourse predictions in sentence processing
Recent research in psycholinguistics has seen a growing interest in the role of prediction in sentence processing. Most attempts to computationally model predictive processing have focused on syntactic prediction. Examples include Hale (2001)’s surprisal model, which relates processing effort to the conditional probability of the current word given the previous words in the sentence. Recent wor...
متن کاملResolving Conflicts Between Syntax and Plausibility in Sentence Comprehension
Comprehension of plausible and implausible object- and subject-relative clause sentences with and without prepositional phrases was examined. Undergraduates read each sentence then evaluated a statement as consistent or inconsistent with the sentence. Higher acceptance of consistent than inconsistent statements indicated reliance on syntactic analysis. Higher acceptance of plausible than implau...
متن کامل