ar X iv : h ep - t h / 04 10 07 1 v 1 7 O ct 2 00 4 DIVERGENCE OF THE 1 N f - SERIES EXPASION IN QED

نویسنده

  • M. Azam
چکیده

It has been argued by Dyson that the perturbation theory in coupling constant in QED can not be convergent. We provide similar arguments for the divergence of the series of 1 Nf expansion in QED. This result should hold for large class of QFTs where such an expansion is under taken. PACS numbers:03.65.-w,11.01.-z,12.20.-m

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 04 10 07 1 v 3 4 A pr 2 00 5 DIVERGENCE OF THE 1 N f - SERIES EXPASION IN QED

The perturbative expansion series in coupling constant in QED is divergent. It is either an asymptotic series or an arrangement of a conditionally convergent series. The sums of these types of series depend on the way we arrange the partial sums for successive approximations. The 1/Nf series expansion in QED, where Nf is the number of flavours, defines a rearrangement of the perturbative series...

متن کامل

ar X iv : h ep - t h / 04 10 07 1 v 2 3 1 D ec 2 00 4 DIVERGENCE OF THE 1 N f - SERIES EXPASION IN QED

The perturbative expansion series in coupling constant in QED is divergent and is expected to be, at the best, conditionally convergent. The 1/Nf series expansion, where Nf is the number of flavours, defines a rearrangement of this perturbative series, and therefore, its convergence would serve as a proof that the perturbative series is, in fact, conditionally convergent.Unfortunately, the 1/Nf...

متن کامل

ar X iv : h ep - t h / 98 10 19 7 v 1 2 3 O ct 1 99 8 A Soluble Theory of Massless Scalar QED 2

In this brief report, we analyze a generalized theory of massless scalar QED2 and show that, unlike the conventional scalar QED2, it is free from infrared divergence problems. The model is exactly soluble and may describe, in an 1+1 dimensional space-time, noninteracting spin-one tachyons.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004