Bayesian nonparametric analysis of neuronal intensity rates.

نویسندگان

  • Athanasios Kottas
  • Sam Behseta
  • David E Moorman
  • Valerie Poynor
  • Carl R Olson
چکیده

We propose a flexible hierarchical Bayesian nonparametric modeling approach to compare the spiking patterns of neurons recorded under multiple experimental conditions. In particular, we showcase the application of our statistical methodology using neurons recorded from the supplementary eye field region of the brains of two macaque monkeys trained to make delayed eye movements to three different types of targets. The proposed Bayesian methodology can be used to perform either a global analysis, allowing for the construction of posterior comparative intervals over the entire experimental time window, or a pointwise analysis for comparing the spiking patterns locally, in a predetermined portion of the experimental time window. By developing our nonparametric Bayesian model we are able to analyze neuronal data from three or more conditions while avoiding the computational expenses typically associated with more traditional analysis of physiological data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical analysis of temporal evolution in single-neuron firing rates.

A fundamental methodology in neurophysiology involves recording the electrical signals associated with individual neurons within brains of awake behaving animals. Traditional statistical analyses have relied mainly on mean firing rates over some epoch (often several hundred milliseconds) that are compared across experimental conditions by analysis of variance. Often, however, the time course of...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

Gender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model

Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Semiparametric Bayesian Decision Models for Optimal Replacement

We present a Bayesian decision theoretic approach for developing replacament strategies. In so doing, we consider a semi-parametric model to describe the failure characteristics of systems by specifying a nonparametric form for cumulative intensity function and by taking into account effect of covariates by a parametric form. Use of a gamma process prior for the cumulative intensity function co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 203 1  شماره 

صفحات  -

تاریخ انتشار 2012