Shake Them All! - Rethinking Selection and Replacement in MOEA/D
نویسندگان
چکیده
In this paper, we build upon the previous efforts to enhance the search ability of Moead (a decomposition-based algorithm), by investigating the idea of evolving the whole population simultaneously at once. We thereby propose new alternative selection and replacement strategies that can be combined in different ways within a generic and problem-independent framework. To assess the performance of our strategies, we conduct a comprehensive experimental study on biobjective combinatorial optimization problems. More precisely, we consider ρMNK-landscapes and knapsack problems as a benchmark, and experiment a wide range of parameter configurations for Moead and its variants. Our analysis reveals the effectiveness of our strategies and their robustness to parameter settings. In particular, substantial improvements are obtained compared to the conventional Moead.
منابع مشابه
A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملMOEA/D-HH: A Hyper-Heuristic for Multi-objective Problems
Hyper-Heuristics is a high-level methodology for selection or automatic generation of heuristics for solving complex problems. Despite the hyper-heuristics success, there is still only a few multi-objective hyper-heuristics. Our approach, MOEA/D-HH, is a multi-objective selection hyper-heuristic that expands the MOEA/D framework. It uses an innovative adaptive choice function proposed in this w...
متن کاملEffects of the Existence of Highly Correlated Objectives on the Behavior of MOEA/D
Recently MOEA/D (multi-objective evolutionary algorithm based on decomposition) was proposed as a high-performance EMO (evolutionary multiobjective optimization) algorithm. MOEA/D has high search ability as well as high computational efficiency. Whereas other EMO algorithms usually do not work well on many-objective problems with four or more objectives, MOEA/D can properly handle them. This is...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملAn Improved MOEA/D with Optimal DE Schemes for Many-Objective Optimization Problems
MOEA/D is a promising multi-objective evolutionary algorithm based on decomposition, and it has been used to solve many multi-objective optimization problems very well. However, there is a class of multi-objective problems, called many-objective optimization problems, but the original MOEA/D cannot solve them well. In this paper, an improved MOEA/D with optimal differential evolution (oDE) sche...
متن کامل