COUP-TFI controls activity-dependent tyrosine hydroxylase expression in adult dopaminergic olfactory bulb interneurons.
نویسندگان
چکیده
COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.
منابع مشابه
Dev115279 1593..1605
Neural stem cells (NSCs) persist in the adult mammalian subventricular zone (SVZ) of the lateral ventricle. Primary NSCs generate rapidly dividing intermediate progenitor cells, which in turn generate neuroblasts that migrate along the rostral migratory stream (RMS) to the olfactory bulb (OB). Here, we have examined the role of the COUP-TFI and COUP-TFII orphan nuclear receptor transcription fa...
متن کاملPhenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb.
A possible source for transplantable neurons in Parkinson's disease are adult olfactory bulb (OB) dopamine (DA) progenitors that originate in the anterior subventricular zone and reach the OB through the rostral migratory stream. We used adult transgenic mice expressing a lacZ reporter directed by an 8.9 kb tyrosine hydroxylase (TH) promoter to investigate the course of DAergic differentiation....
متن کاملPax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb.
The subventricular zone (SVZ) produces different subclasses of olfactory bulb (OB) interneurons throughout life. Little is known about the molecular mechanisms controlling the production of different types of interneurons. Here we show that most proliferating adult SVZ progenitors express the transcription factor Pax6, but only a small subpopulation of migrating neuroblasts and new OB interneur...
متن کاملA distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment.
The axon initial segment (AIS) is a specialized structure near the start of the axon that is a site of neuronal plasticity. Changes in activity levels in vitro and in vivo can produce structural AIS changes in excitatory cells that have been linked to alterations in excitability, but these effects have never been described in inhibitory interneurons. In the mammalian olfactory bulb (OB), dopami...
متن کاملMeis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb.
Meis homeodomain transcription factors control cell proliferation, cell fate specification and differentiation in development and disease. Previous studies have largely focused on Meis contribution to the development of non-neuronal tissues. By contrast, Meis function in the brain is not well understood. Here, we provide evidence for a dual role of the Meis family protein Meis2 in adult olfacto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 140 24 شماره
صفحات -
تاریخ انتشار 2013