Sentiment Analysis of Comments on Rohingya Movement with Support Vector Machine

نویسندگان

  • Hemayet Ahmed Chowdhury
  • Tanvir Alam Nibir
  • Md. Saiful Islam
چکیده

The Rohingya Movement and Crisis caused a huge uproar in the political and economic state of Bangladesh. Refugee movement is a recurring event and a large amount of data in the form of opinions remains on social media such as Facebook, with very little analysis done on them.To analyse the comments based on all Rohingya related posts, we had to create and modify a classifier based on the Support Vector Machine algorithm. The code is implemented in python and uses scikit-learn library. A dataset on Rohingya analysis is not currently available so we had to use our own data set of 2500 positive and 2500 negative comments. We specifically used a support vector machine with linear kernel. A previous experiment was performed by us on the same dataset using the naïve bayes algorithm, but that did not yield impressive results. Keywords— Support Vector Machine; Sentiment; Linear Kernel; Scikit-learn; Naïve Bayes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data

Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...

متن کامل

Text Sentiment Classification Based on Mixed Cloud Vector Model Clustering and Kernel Fisher Discriminant

In today’s world, the web has dramatically changed the way that people express their opinions. People use the internet to express their opinion, attitude, feeling and emotion about films, goods, news etc. It is challenging to automatically classify mass subjectivity comments into different sentiment orientation categories (e.g. positive/negative). Furthermore, the ambiguity and randomness, whic...

متن کامل

Improved Optimized Sentiment Classification On Dynamic Tweets

Real time Sentiment analysis is a subfield of Natural Language Processing concerned with the determination of opinion and subjectivity in a text, which has many applications. In this paper, classifiers for sentiment analysis of user opinion towards through comments and tweets sing Support Vector Machine (SVM) is described. The goal is to develop a classifier that performs sentiment analysis, by...

متن کامل

An Evaluation of Sentiment Analysis and Classification Algorithms for Arabic Textual Data

Sentiment analysis is a recent advance in text mining applications for analyzing textual data according to orientation of human comments to determine whether they are positive, negative, or neutral. Different data mining techniques and algorithms such as support vector machine, naïve Bayes, decision tree, k-nearest neighbor and other techniques are used for analyzing textual data. These techniq...

متن کامل

A Comparison of Approaches for Sentiment Classification on Lithuanian Internet Comments

Despite many methods that effectively solve sentiment classification task for such widely used languages as English, there is no clear answer which methods are the most suitable for the languages that are substantially different. In this paper we attempt to solve Internet comments sentiment classification task for Lithuanian, using two classification approaches – knowledge-based and supervised ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018