The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation.
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae, the Cdc25/Ras/cAMP/protein kinase A (PKA) pathway plays a major role in the control of metabolism, stress resistance and proliferation, in relation to the available nutrients and conditions. The budding yeast RasGEF Cdc25 was the first RasGEF to be identified in any organism, but very little is known about its activity regulation. Recently, it was suggested that the dispensable N-terminal domain of Cdc25 could negatively control the catalytic activity of the protein. In order to investigate the role of this domain, strains were constructed that produced two different versions of the C-terminal domain of Cdc25 (aa 907-1589 and 1147-1589). The carbon-source-dependent cell size control mechanism present in the wild type was found in the first of these mutants, but was lost in the second mutant, for which the cell size, determined as protein content, was the same during exponential growth in both ethanol- and glucose-containing media. A biparametric analysis demonstrated that this effect was essentially due to the inability of the mutant producing the shorter sequence to modify its protein content at budding. A similar phenotype was observed in strains that lacked CDC25, but which possessed a mammalian GEF catalytic domain. Taken together, these results suggest that Cdc25 is involved in the regulation of cell size in the presence of different carbon sources. Moreover, production of the aa 876-1100 fragment increased heat-stress resistance in the wild-type strain, and rescued heat-shock sensitivity in the ira1Delta background. Further work will aim to clarify the role of this region in Cdc25 activity and Ras/cAMP pathway regulation.
منابع مشابه
A role for the noncatalytic N terminus in the function of Cdc25, a Saccharomyces cerevisiae Ras-guanine nucleotide exchange factor.
The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor (GEF) for Ras proteins. Its catalytic domain is highly homologous to Ras-GEFs from all eukaryotes. Even though Cdc25 is the first Ras-GEF identified in any organism, we still know very little about how its function is regulated in yeast. In this work we provide evidence for the involvement of the N terminus of ...
متن کاملThe role of cdc2 and other genes in meiosis in Schizosaccharomyces pombe.
The requirement of the cdc2, cdc13 and cdc25 genes for meiosis in Schizosaccharomyces pombe was investigated using three different conditions to induce meiosis. These genes were known to be required for meiosis II. cdc13 and cdc25 are essential for meiosis I. The cdc2 gene, which is required for the initiation of both mitotic S-phase and M-phase, is essential for premeiotic DNA synthesis and me...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملStatistical Optimization of Conditions for Maximize Production of Mannan by Saccharomyces Cerevisiae Using Response Surface Methodology
In view of the increase in Saccharomyces cerevisiae mannan content, the culture condition for S.cerevisiae were optimized in this study. The influence of culture condition such as original pH, inoculum size, and temperature on mannan production were evaluated using Response surface methodology. The mathematical model was established by the quadratic rotary combination design. with the order of ...
متن کاملمهار رشد رده سرطانی K562 با استفاده از دیواره سلولی استخراج شده از پروبیوتیکهای Saccharomyces cerevisiae و Saccharomyces boulardi به همراه نانو ذرات روی
Background: Chronic myeloid leukemia is a common cancer in human, so the goal of this study was the use of natural compound such as cell wall obtained from Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardi (S. boulardi) and zinc nanoparticles on the growth inhibition of K562 cell line. Methods: For cell wall preparation, both yeasts were cultured in a basic medium at a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 152 Pt 4 شماره
صفحات -
تاریخ انتشار 2006