Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines
نویسندگان
چکیده
We present a framework for generating a trivariate B-spline parametrization of turbine blades from measurement data generated by optical scanners. This new representation replaces the standard patchbased representation of industrial blade designs. In a first step, the blade surface is represented by a smoothly varying family of B-spline curves. In a second step, the blade is parametrized by a trivariate B-spline volume. The resulting model is suitable for numerical simulation via isogeometric analysis, as well as for a fully automatic structured mesh generation with standard finite elements. We focus on the industrial applicability of the framework, by using standard turbine blade features throughout the process.
منابع مشابه
An investigation on fatigue failure of turbine blades of aircraft engines by high cycles fatigue test
Thermal stress, wear and material damage produce effects of high-cycle fatigue failures in aircraft engines. The loading configuration on turbine blades of aircraft engines consists of an axial load. The axial load is the centrifugal force combined with the tensile and compressive loads, caused by the natural vibrations of the blades themselves. Low-cycle fatigue and high-cycle fatigue loading ...
متن کاملIsogeometric simulation of turbine blades for aircraft engines
Isogeometric analysis is a novel approach to numerical simulation that has the potential to bridge the gap between geometric design and numerical analysis. It uses the same exact geometry representation in all stages of the product development. In this paper we present recent results which demonstrate the competitiveness of the new concept in an industrial environment, more precisely, in the ch...
متن کاملEffect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys
High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the m...
متن کاملNovel Thermal Barrier Coatings Produced by Axial Suspension Plasma Spray
Ceramic Thermal Barrier Coatings (TBCs) on superalloy components are being used successfully in land-based gas turbine and aircraft engines. These coatings are generally made by either air plasma spraying (APS) or electron beam physical vapour deposition (EB-PVD). In general, EB-PVD TBCs have superior durability due to the columnar structure, but they are very expensive compared to APS TBCs. EB...
متن کاملSynchrotron Mesodiffraction: A Tool for Understanding Turbine Engine Foreign Object Damage
Aircraft turbine engines routinely experience the ingestion of debris resulting in “foreign object damage” or FOD. Failures associated with foreign object damage have been estimated to cost the aerospace industry $4 billion per year. Often, FOD does not lead to sudden catastrophic failure, yet such damage can dramatically reduce the lifetime of components subjected to cyclic fatigue stresses. T...
متن کامل