Null mutation of connexin43 causes slow propagation of ventricular activation in the late stages of mouse embryonic development.

نویسندگان

  • D Vaidya
  • H S Tamaddon
  • C W Lo
  • S M Taffet
  • M Delmar
  • G E Morley
  • J Jalife
چکیده

Connexin43 (Cx43) is the principal connexin isoform in the mouse ventricle, where it is thought to provide electrical coupling between cells. Knocking out this gene results in anatomic malformations that nevertheless allow for survival through early neonatal life. We examined electrical wave propagation in the left (LV) and right (RV) ventricles of isolated Cx43 null mutated (Cx43(-/-)), heterozygous (Cx43(+/)(-)), and wild-type (WT) embryos using high-resolution mapping of voltage-sensitive dye fluorescence. Consistent with the compensating presence of the other connexins, no reduction in propagation velocity was seen in Cx43(-/-) ventricles at postcoital day (dpc) 12.5 compared with WT or Cx43(+/)(-) ventricles. A gross reduction in conduction velocity was seen in the RV at 15.5 dpc (in cm/second, mean [1 SE confidence interval], WT 9.9 [8.7 to 11.2], Cx43(+/)(-) 9.9 [9.0 to 10.9], and Cx43(-/-) 2.2 [1.8 to 2.7; P<0.005]) and in both ventricles at 17.5 dpc (in RV, WT 8.4 [7.6 to 9.3], Cx43(+/)(-) 8.7 [8.1 to 9.3], and Cx43(-/-) 1.1 [0.1 to 1.3; P<0.005]; in LV, WT 10.1 [9.4 to 10.7], Cx43(+/)(-) 8.3 [7.8 to 8.9], and Cx43(-/-) 1.7 [1.3 to 2.1; P<0.005]) corresponding with the downregulation of Cx40. Cx40 and Cx45 mRNAs were detectable in ventricular homogenates even at 17.5 dpc, probably accounting for the residual conduction function. Neonatal knockout hearts were arrhythmic in vivo as well as ex vivo. This study demonstrates the contribution of Cx43 to the electrical function of the developing mouse heart and the essential role of this gene in maintaining heart rhythm in postnatal life.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression Profile Analysis during Mouse Tooth Development

Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...

متن کامل

Generation of a mouse model for a conditional inactivation of Gtf2i allele.

The multifunctional transcription factor TFII-I encoded by the Gtf2i gene is expressed at the two-cell stage, inner cell mass, trophectoderm, and early gastrula stages of the mouse embryo. In embryonic stem cells, TFII-I colocalizes with bivalent domains and depletion of Gtf2i causes embryonic lethality, neural tube closure, and craniofacial defects. To gain insight into the function of TFII-I ...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Human Connexin43E42K mutation from a sudden infant death victim leads to impaired ventricular activation and neonatal death in mice.

BACKGROUND Sudden infant death syndrome (SIDS) describes the sudden, unexplained death of a baby during its first year of age and is the third leading cause of infant mortality. It is assumed that ≤20% of all SIDS cases are because of cardiac arrhythmias resulting from mutations in ion channel proteins. Besides ion channels also cardiac gap junction channels are important for proper conduction ...

متن کامل

P-65: Maternal Effect Genes in Mammalian Reproduction

Background: Regulation of gene expression in mammalian embryos is not completely known. Pre-implantation embryos need maternal RNA and proteins synthesized during oogenesis, to regulate development before mater-embryo transition, as the grown oocyte and the 1-cell zygote are transcriptionally silent. There are some oocyte-specific genes called maternal effect genes which may account for this ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 88 11  شماره 

صفحات  -

تاریخ انتشار 2001