Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test
نویسندگان
چکیده
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.
منابع مشابه
Characterization and Prediction of Austenite Formation and Decomposition in Steel Welds
Austenite formation and its decomposition control the final microstructure and performance of steel welds. This paper presents an in-situ characterization of austenite formation and its decomposition in both the fusion zone (FZ) and heat-affected zone (HAZ) of an Fe-C-Al-Mn steel using time-resolved X-ray diffraction (TRXRD) with synchrotron radiation. Measurement of X-ray diffraction spectra a...
متن کاملIdentification of Retained Austenite, Ferrite, Bainite and Martensite in the Microstructure of TRIP Steel
Transformation induced plasticity (TRIP) steels have a vast application in automotive industry because of theirhigh strength, high ductility and hence excellent energy absorption capacity. These characteristics of TRIPsteels are due to the existence of retained austenite in their microstructures in the ambient temperature, whichtransforms to the martensite phase during deforma...
متن کاملSynthesis oF Fe-TiC Hard Coating From Ilmenite via Laser Cladding
The aim of this work was to synthesize TiC reinforced coating on carbon steel via reduction of ilmenite powder. A mixture of ilmenite and graphite was pre-placed on AISI 1020 steel surface. The effect of the addition of excess graphite amounts on the progress of synthesis of carbide particles was studied. The evolution of phases in different coatings was analysed via X-ray diffraction and scann...
متن کاملX-ray diffraction peak profile analysis of maraged Fe-Ni-Mn steels
X-ray diffraction peak profile analysis was used to identify changes in the lattice distortions during isothermal aging of Fe-10Ni-7Mn (wt. %) maraging steel. Integral peak breadths were analyzed using classical Williamson-Hall equation taking the elastic anisotropy into account. It was found that substantial lattice distortions rise during precipitation hardening which depend strongly on the s...
متن کاملMicrostructural Evolution of Roll Bonded Al-Clad Stainless Steel Sheets at Elevated Temperatures
The cold roll bonding of Al on AISI 304L stainless steel was carried out to fabricate the Al/304L/Al clad sheet composites. The maximum bond strength of 20 N/mm was acquired just by 38% reduction, for which the tearing of the aluminum sheet occurred during the peeling test. The microstructural evolution during subsequent postannealing heat treatment was systematically studied based on the impur...
متن کامل