Mixed integer programming improves comprehensibility and plan quality in inverse optimization of prostate HDR brachytherapy.

نویسندگان

  • Bram L Gorissen
  • Dick den Hertog
  • Aswin L Hoffmann
چکیده

Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices.

PURPOSE Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution...

متن کامل

Mixed Integer Programming Approaches to Treatment Planning for Brachytherapy - Application to Permanent Prostate Implants

Mixed integer programming models and computational strategies developed for treatment planning optimization in brachytherapy are described. The problem involves the designation of optimal placement of radioactive sources (seeds) inside a tumor site. Two MIP models are described. The resulting MIP instances are difficult to solve, due in large part to dense constraint matrices with large dispari...

متن کامل

Mixed integer programming optimization models for brachytherapy treatment planning

Mixed integer programming is proposed as an approach for generating treatment plans for brachytherapy. Two related but distinct, mixed integer programming models are tested on data from eight prostate cancer patients. The results demonstrate that in some cases, "good" treatment plans can be obtained in less than five CPU minutes.

متن کامل

A hybrid simulated annealing linear programming approach for treatment planning in HDR brachytherapy with dose volume constrai

This paper presents a hybrid approach for developing radiation plans for high dose rate brachytherapy in cancer treatment. In order to take care of the computationally hard dose volume constraints, linear programming (LP) is alternated with heuristic neighborhood search which allows for a quick generation of multiple feasible treatment plans. The simulated annealing neighborhood search is guide...

متن کامل

Exact Mixed Integer Programming for Integrated Scheduling and Process Planning in Flexible Environment

This paper presented a mixed integer programming for integrated scheduling and process planning. The presented process plan included some orders with precedence relations similar to Multiple Traveling Salesman Problem (MTSP), which was categorized as an NP-hard problem. These types of problems are also called advanced planning because of simultaneously determining the appropriate sequence and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 2013