Configurational Temperature Verification of Monte Carlo Simulations
نویسندگان
چکیده
A new diagnostic that is useful for checking the algorithmic correctness of Monte Carlo computer programs is presented. The check is made by comparing the Boltzmann temperature, which is input to the program and used to accept or reject moves, with a configurational temperature k T B config = ∇ ∇ q q Φ Φ 2 2 . Here, Φ is the potential energy of the system and ∇q represents the dimensionless gradient operator with respect to the particle positions q . We show, using a simulation of Lennard-Jones particles, that the configurational temperature rapidly and accurately tracks changes made to the input temperature even when the system is not in global thermodynamic equilibrium. Coding and/or algorithmic errors can be detected by checking that the input temperature and Tconfig agree. The effects of system size and continuity of Φ and its first derivative on Tconfig are also discussed.
منابع مشابه
Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملFeedback-optimized parallel tempering Monte Carlo
We introduce an algorithm for systematically improving the efficiency of parallel tempering Monte Carlo simulations by optimizing the simulated temperature set. Our approach is closely related to a recently introduced adaptive algorithm that optimizes the simulated statistical ensemble in generalized broad-histogram Monte Carlo simulations. Conventionally, a temperature set is chosen in such a ...
متن کاملConfigurational Entropy Effects during Sorption of HexaneIsomers in Silicalite
Santilli (J. Catal. 99, 335–341, 1986) has presented experimental data for sorption of hexane isomers, n-hexane (n-C6), 3-methylpentane (3MP), and 2,2-dimethylbutane (22DMB), in various zeolites. The experimental data on the loadings of the isomers at various temperatures using silicalite are particularly intriguing; 3MP and 22DMB are both seen to exhibit maxima in the sorption loadings with in...
متن کاملInvestigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system
Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...
متن کامل