Methods for preparing polymer-decorated single exchange-biased magnetic nanoparticles for application in flexible polymer-based films
نویسندگان
چکیده
Background: Magnetic nanoparticles (NPs) must not only be well-defined in composition, shape and size to exhibit the desired properties (e.g., exchange-bias for thermal stability of the magnetization) but also judiciously functionalized to ensure their stability in air and their compatibility with a polymer matrix, in order to avoid aggregation which may seriously affect their physical properties. Dipolar interactions between NPs too close to each other favour a collective magnetic glass state with lower magnetization and coercivity because of inhomogeneous and frustrated macrospin cluster freezing. Consequently, tailoring chemically (through surface functionalization) and magnetically stable NPs for technological applications is of primary importance. Results: In this work, well-characterized exchange-biased perfectly epitaxial Co x Fe3-x O4@CoO core@shell NPs, which were isotropic in shape and of about 10 nm in diameter, were decorated by two different polymers, poly(methyl methacrylate) (PMMA) or polystyrene (PS), using radical-controlled polymerization under various processing conditions. We compared the influence of the synthesis parameters on the structural and microstructural properties of the resulting hybrid systems, with special emphasis on significantly reducing their mutual magnetic attraction. For this, we followed two routes: the first one consists of the direct grafting of bromopropionyl ester groups at the surface of the NPs, which were previously recovered and redispersed in a suitable solvent. The second route deals with an "all in solution" process, based on the decoration of NPs by oleic acid followed by ligand exchange with the desired bromopropionyl ester groups. We then built various assemblies of NPs directly on a substrate or suspended in PMMA. Conclusion: The alternative two-step strategy leads to better dispersed polymer-decorated magnetic particles, and the resulting nanohybrids can be considered as valuable building blocks for flexible, magnetic polymer-based devices.
منابع مشابه
Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملPreparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملMagnetic investigation of microwave synthesized and thermal stable poly vinyl alcohol-cobalt ferrite nanocomposites
We synthesized CoFe2O4 nanoparticles using heating in various times by simple microwave method at power about 600W. Water, ethylene glycol and their combination were used as solvent. X-ray diffraction pattern(XRD) analysis was performed for evaluation of structural characterization of samples. We also used scanning electron microscopy (SEM) to evaluate the effects of various parameters of heati...
متن کاملSynthesis and characterization of Polyvinyl Alcohol-Polypyrrole-Silver nanocomposite polymer films
The present paper describes the preparation and characterization of Polyvinyl Alcohol-Polypyrrole-Silver Nanocomposite (PVA-PPy-Ag NC) films. The prepared films were conducting, freestanding, flexible, and robust. Silver nanoparticles (Ag NPs) were synthesized from an aqueous solution of silver nitrate using trisodium citrate as a reductant. The casting solution for the films was prepared by in...
متن کاملAll-nanoparticle concave diffraction grating fabricated by self-assembly onto magnetically-recorded templates.
Using the enormous magnetic field gradients present near the surface of magnetic recording media, we assemble diffraction gratings with lines consisting entirely of self-assembled magnetic nanoparticles that are transferred to flexible polymer thin films. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of cur...
متن کامل