On the Generalized Hermite-Based Lattice Boltzmann Construction, Lattice Sets, Weights, Moments, Distribution Functions and High-Order Models

نویسنده

  • Raúl Machado
چکیده

The influence of the use of the generalized Hermite polynomial on the Hermite-based lattice Boltzmann (LB) construction approach, lattice sets, the thermal weights, moments and the equilibrium distribution function (EDF) are addressed. A new moment system is proposed. The theoretical possibility to obtain a high-order Hermite-based LB model capable to exactly match some first hydrodynamic moments thermally 1) on-Cartesian lattice, 2) with thermal weights in the EDF, 3) whilst the highest possible hydrodynamic moments that are exactly matched are obtained with the shortest on-Cartesian lattice sets with some fixed real-valued temperatures, is also analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deriving thermal lattice-Boltzmann models from the continuous Boltzmann equation: theoretical aspects

The particles model, the collision model, the polynomial development used for the equilibrium distribution, the time discretization and the velocity discretization are factors that let the lattice Boltzmann framework (LBM) far away from its conceptual support: the continuous Boltzmann equation (BE). Most collision models are based on the BGK, single parameter, relaxation-term leading to constan...

متن کامل

Fundamental Conditions for N -th Order Accurate Lattice Boltzmann Models

In this paper, we theoretically prove a set of fundamental conditions pertaining discrete velocity sets and corresponding weights. These conditions provide sufficient conditions for a priori formulation of lattice Boltzmann models that automatically admit correct hydrodynamic moments up to any given N-th order.

متن کامل

Discretization of the velocity space in solution of the Boltzmann equation

We point out an equivalence between the discrete velocity method of solving the Boltzmann equation, of which the lattice Boltzmann equation method is a special example, and the approximations to the Boltzmann equation by a Hermite polynomial expansion. Discretizing the Boltzmann equation with a BGK collision term at the velocities that correspond to the nodes of a Hermite quadrature is shown to...

متن کامل

FUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY AUTOMATON BASED ON GENERALIZED RESIDUATED LATTICE

This work is towards the study of the relationship between fuzzy preordered sets and Alexandrov (left/right) fuzzy topologies based on generalized residuated lattices here the fuzzy sets are equipped with generalized residuated lattice in which the commutative property doesn't hold. Further, the obtained results are used in the study of fuzzy automata theory.

متن کامل

Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows

In this work, we have theoretically analyzed and numerically evaluated the accuracy of high-order lattice Boltzmann (LB) models for capturing non-equilibrium effects in rarefied gas flows. In the incompressible limit, the LB equation is proved to be equivalent to the linearized Bhatnagar-Gross-Krook (BGK) equation. Therefore, when the same Gauss-Hermite quadrature is used, LB method closely ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.4865  شماره 

صفحات  -

تاریخ انتشار 2013