Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium
نویسندگان
چکیده
Dinoflagellate plastid genes are believed to be encoded on small generally unigenic plasmid-like minicircles. The minicircle gene complement has reached saturation with an incomplete set of plastid genes (18) compared with typical functional plastids (60-200). While some of the missing plastid genes have recently been found in the nucleus, it is still unknown if additional genes, not located on minicircles, might also contribute to the plastid genome. Sequencing of tailed RNA showed that transcripts derived from the known minicircle genes psbA and atpB contained a homogenous 3' polyuridine tract of 25-40 residues. This unusual modification suggested that random sequencing of a poly(dA) primed cDNA library could be used to characterize the plastid transcriptome. We have recovered only 12 different polyuridylylated transcripts from our library, all of which are encoded on minicircles in several dinoflagellate species. The correspondence of all polyuridylylated transcripts with previously described minicircle genes thus supports the dinoflagellate plastid as harbouring the smallest genome of any functional chloroplast. Interestingly, northern blots indicate that the majority of transcripts are modified, suggesting that polyuridylylation is unlikely to act as a degradation signal as do the heterogeneous poly(A)-rich extensions of transcripts in cyanobacteria and other plastids.
منابع مشابه
Genome-Wide Transcript Profiling Reveals the Coevolution of Plastid Gene Sequences and Transcript Processing Pathways in the Fucoxanthin Dinoflagellate Karlodinium veneficum
Plastids utilize a complex gene expression machinery, which has coevolved with the underlying genome sequence. Relatively, little is known about the genome-wide evolution of transcript processing in algal plastids that have undergone complex endosymbiotic events. We present the first genome-wide study of transcript processing in a plastid acquired through serial endosymbiosis, in the fucoxanthi...
متن کاملA common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan ev...
متن کاملDifferent regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase.
Regulation of antioxidant enzymes is critical to control the levels of reactive oxygen species in cell compartments highly susceptible to oxidative stress. In this work, we studied the regulation of a chloroplastic iron superoxide dismutase (Fe-SOD) from Lingulodinium polyedrum (formerly Gonyaulax polyedra) under different physiological conditions. A cDNA-encoding Fe-SOD was isolated from this ...
متن کاملA Full Suite of Histone and Histone Modifying Genes Are Transcribed in the Dinoflagellate Lingulodinium
BACKGROUND Dinoflagellates typically lack histones and nucleosomes are not observed in DNA spreads. However, recent studies have shown the presence of core histone mRNA sequences scattered among different dinoflagellate species. To date, the presence of all components required for manufacturing and modifying nucleosomes in a single dinoflagellate species has not been confirmed. METHODOLOGY AN...
متن کاملCharacterization of Two Dinoflagellate Cold Shock Domain Proteins
Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006