Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis.

نویسندگان

  • Satoko Sugawara
  • Shojiro Hishiyama
  • Yusuke Jikumaru
  • Atsushi Hanada
  • Takeshi Nishimura
  • Tomokazu Koshiba
  • Yunde Zhao
  • Yuji Kamiya
  • Hiroyuki Kasahara
چکیده

Auxins are hormones that regulate many aspects of plant growth and development. The main plant auxin is indole-3-acetic acid (IAA), whose biosynthetic pathway is not fully understood. Indole-3-acetaldoxime (IAOx) has been proposed to be a key intermediate in the synthesis of IAA and several other indolic compounds. Genetic studies of IAA biosynthesis in Arabidopsis have suggested that 2 distinct pathways involving the CYP79B or YUCCA (YUC) genes may contribute to IAOx synthesis and that several pathways are also involved in the conversion of IAOx to IAA. Here we report the biochemical dissection of IAOx biosynthesis and metabolism in plants by analyzing IAA biosynthesis intermediates. We demonstrated that the majority of IAOx is produced by CYP79B genes in Arabidopsis because IAOx production was abolished in CYP79B-deficient mutants. IAOx was not detected from rice, maize, and tobacco, which do not have apparent CYP79B orthologues. IAOx levels were not significantly altered in the yuc1 yuc2 yuc4 yuc6 quadruple mutants, suggesting that the YUC gene family probably does not contribute to IAOx synthesis. We determined the pathway for conversion of IAOx to IAA by identifying 2 likely intermediates, indole-3-acetamide (IAM) and indole-3-acetonitrile (IAN), in Arabidopsis. When (13)C(6)-labeled IAOx was fed to CYP79B-deficient mutants, (13)C(6) atoms were efficiently incorporated to IAM, IAN, and IAA. This biochemical evidence indicates that IAOx-dependent IAA biosynthesis, which involves IAM and IAN as intermediates, is not a common but a species-specific pathway in plants; thus IAA biosynthesis may differ among plant species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis.

Auxins are growth regulators involved in virtually all aspects of plant development. However, little is known about how plants synthesize these essential compounds. We propose that the level of indole-3-acetic acid is regulated by the flux of indole-3-acetaldoxime through a cytochrome P450, CYP83B1, to the glucosinolate pathway. A T-DNA insertion in the CYP83B1 gene leads to plants with a pheno...

متن کامل

Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3.

The plant hormone auxin regulates many aspects of plant growth and development. Although several auxin biosynthetic pathways have been proposed, none of these pathways has been precisely defined at the molecular level. Here we provide in planta evidence that the two Arabidopsis cytochrome P450s, CYP79B2 and CYP79B3, which convert tryptophan (Trp) to indole-3-acetaldoxime (IAOx) in vitro, are cr...

متن کامل

The pathway of auxin biosynthesis in plants.

The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. I...

متن کامل

Functional interpretation and structural insights of Arabidopsis lyrata cytochrome P450 CYP71A13 involved in auxin synthesis

Cytochrome P450 CYP71A13 of Arabidopsis lyrata is a heme protein involved in biosynthesis of indole-3-acetonitrile which leads to the formation of indolyl-3-acetic acid. It catalyzes a unique reaction: formation of a carbon-nitrogen triple bond and dehydration of indolyl-3-acetaldoxime. Homology model of this 57 kDa polypeptide revealed that the heme existed between H-helix and J- helix in the ...

متن کامل

The role of cytochrome P450 enzymes in the biosynthesis of camalexin.

The biosynthesis of camalexin, the main phytoalexin of the model plant Arabidopsis thaliana, involves at least two CYP (cytochrome P450) steps. It is synthesized from tryptophan via indole-3-acetaldoxime in a reaction catalysed by CYP79B2 and CYP79B3. Based on the pad3 mutant phenotype, CYP71B15 (PAD3) had also been suggested as a camalexin biosynthetic gene. CYP71B15 catalyses the final step i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 13  شماره 

صفحات  -

تاریخ انتشار 2009