Acoustic attenuation in three-component gas mixtures--theory.
نویسندگان
چکیده
Vibrational relaxation accounts for absorption and dispersion of acoustic waves in gases that can be significantly greater than the classical absorption mechanisms related to shear viscosity and heat conduction. This vibrational relaxation results from retarded energy exchange between translational and intramolecular vibrational degrees of freedom. Theoretical calculation of the vibrational relaxation time of gases based on the theory of Landau and Teller [Phys. Z. Sovjetunion 10, 34 (1936); 1, 88 (1932): 2, 46 (1932)] and Schwartz et al. [J. Chem. Phys. 20, 1591 (1952)] has been applied at room temperature to ternary mixtures of polyatomic gases containing nitrogen, water vapor, and methane. Due to vibrational-translational and vibrational-vibrational coupling between all three components in ternary mixtures, multiple relaxation processes produce effective relaxation frequencies affecting the attenuation of sound. The dependence of effective relaxation frequencies and the attenuation on mole fractions of the constituents was investigated. The acoustic attenuation in a mixture that is primarily nitrogen is strongly dependent on the concentrations of methane and water vapor that are present. However, the attenuation in a mixture that is primarily methane is only weakly dependent on the concentrations of nitrogen and water vapor. The theory developed in this paper is applicable to other multicomponent mixtures.
منابع مشابه
Acoustic attenuation in gas mixtures with nitrogen: experimental data and calculations.
Attenuation in a gas results from a combination of classical attenuation, attenuation from diffusion, and attenuation due to molecular relaxation. In previous papers [J. Acoust. Soc. Am. 109, 1955 (2001); 110, 2974 (2001)] a model is described that predicts the attenuation from vibrational relaxation in gas mixtures. In order to validate this model, the attenuation was measured using a pulse te...
متن کاملAcoustic attenuation in a three-gas mixture: Results
Acoustic attenuation in a mixture of gases results from the combined effects of molecular relaxation and the classical mechanisms of viscosity and heat conduction. Consequently, the attenuation depends on the composition of the gas mixture, acoustic frequency, temperature, and pressure. A model of the relaxational attenuation that permits the calculation of acoustic attenuation is used to predi...
متن کاملA Correlation Study of Computational Techniques of a Three-pass Perforated Tube Muffler including Bem and 1d Methods
Automotive exhaust systems give a major contribution to the sound quality of a vehicle and must be properly designed in order to produce acceptable acoustic performances. Obviously, noise attenuation is strictly related to the internal gas-dynamic field that, on the other hand, needs to be optimised also in terms of pressure losses. In this work, the noise attenuation characteristics of a perfo...
متن کاملDriving Force for Nucleation of Multi-Component Gas Hydrate
Based on driving force for crystallization of one-component gas hydrate, in this report an expression for the supersaturation for crystallization of multicomponent gas hydrate is derived. Expressions for the supersaturation are obtained in isothermal and isobaric regimes. The results obtained are applied to the crystallization of hydrates of mixtures of methane plus ethane and can apply to ...
متن کاملThe Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks
In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 109 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2001