Growing Neural Networks using Soft Competitive Learning
نویسندگان
چکیده
This paper gives an overview of some classical Growing Neural Networks (GNN) using soft competitive learning. In soft competitive learning each input signal is characterized by adapting in addition to the winner also some other neurons of the network. The GNN is also called the ANN with incremental learning. The artificial neural networks (ANN) mapping capability depends on the number of layers and the number of hidden layers in the structure of ANN. There is no formal way of computing network structure. Network structure is usually selected by trial-and-error method but it is time consuming process. Basically, we make use of two mechanisms that may modify the structure of the network: growth and pruning. In this paper, the competitive learning is firstly introduced; secondly the SOM topology and limitations of SOM are illustrated. Thirdly, a class of classical GNN with soft competitive learning is reviewed, such as Neural Gas Network (NGN), Growing Neural Gas (GNG), Self-Organizing Surfaces (SOS), Incremental Grid Growing (lGG), Evolve Self-Organizing Maps (ESOM), Growing Hierarchical Self-Organizing Map (GHSOM), and Growing Cell Structures (GCS).
منابع مشابه
Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality
The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen’s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappi...
متن کاملSupervised Competition Using Joined Growing Neural Gas
Competitive learning is well-known method to process data. Various goals may be achieved using competitive learning such as classification or vector quantization. In this paper, we present a different insight into the principle of supervised competitive learning. An innovative approach to the supervised self-organization is suggested. The method is based on different handling of input data labe...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملارزیابی عملکرد مدلهای محاسباتی نرم در تخمین ارتفاع امواج در بندر انزلی
Wind waves are one of the important, fundamental and interesting subjects in port and coastal engineering. Thus, within years, different methods such as experimental methods, numerical modeling and soft computing methods have been employed to estimate the wave parameters. In this study, waves height in Anzali port is predicted using soft computing models such as multivariate adaptive regressi...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کامل