Multilabel Classification using Bayesian Compressed Sensing
نویسندگان
چکیده
In this paper, we present a Bayesian framework for multilabel classification using compressed sensing. The key idea in compressed sensing for multilabel classification is to first project the label vector to a lower dimensional space using a random transformation and then learn regression functions over these projections. Our approach considers both of these components in a single probabilistic model, thereby jointly optimizing over compression as well as learning tasks. We then derive an efficient variational inference scheme that provides joint posterior distribution over all the unobserved labels. The two key benefits of the model are that a) it can naturally handle datasets that have missing labels and b) it can also measure uncertainty in prediction. The uncertainty estimate provided by the model allows for active learning paradigms where an oracle provides information about labels that promise to be maximally informative for the prediction task. Our experiments show significant boost over prior methods in terms of prediction performance over benchmark datasets, both in the fully labeled and the missing labels case. Finally, we also highlight various useful active learning scenarios that are enabled by the probabilistic model.
منابع مشابه
Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملMultilabel Classification with Principal Label Space Transformation
We consider a hypercube view to perceive the label space of multilabel classification problems geometrically. The view allows us not only to unify many existing multilabel classification approaches but also design a novel algorithm, principal label space transformation (PLST), that captures key correlations between labels before learning. The simple and efficient PLST relies on only singular va...
متن کاملMulti-label Classification with Principle Label Space Transformation
We propose a novel hypercube view that perceives the label space of multi-label classification problems geometrically. The view allows us to not only unify many existing multilabel classification approaches, but also design a novel algorithm, Principle Label Space Transformation (PLST), which seeks important correlations between labels before learning. The simple and efficient PLST relies on on...
متن کاملPredicting Useful Neighborhoods for Lazy Local Learning
Lazy local learning methods train a classifier “on the fly” at test time, using only a subset of the training instances that are most relevant to the novel test example. The goal is to tailor the classifier to the properties of the data surrounding the test example. Existing methods assume that the instances most useful for building the local model are strictly those closest to the test example...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کامل