Real-time convolutional networks for sonar image classification in low-power embedded systems
نویسنده
چکیده
Deep Neural Networks have impressive classification performance, but this comes at the expense of significant computational resources at inference time. Autonomous Underwater Vehicles use low-power embedded systems for sonar image perception, and cannot execute large neural networks in real-time. We propose the use of max-pooling aggressively, and we demonstrate it with a Fire-based module and a new Tiny module that includes max-pooling in each module. By stacking them we build networks that achieve the same accuracy as bigger ones, while reducing the number of parameters and considerably increasing computational performance. Our networks can classify a 96× 96 sonar image with 98.8 − 99.7% accuracy on only 41 to 61 milliseconds on a Raspberry Pi 2, which corresponds to speedups of 28.6 − 19.7.
منابع مشابه
Multimodal Integration of Micro-Doppler Sonar and auditory signals for Behavior Classification with convolutional Networks
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The sys...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملNn-X - a hardware accelerator for convolutional neural networks
Gokhale, Vinayak A. M.S.E.C.E, Purdue University, August 2014. nn-X A Hardware Accelerator for Convolutional Neural Networks. Major Professor: Eugenio Culurciello. Convolutional neural networks (ConvNets) are hierarchical models of the mammalian visual cortex. These models have been increasingly used in computer vision to perform object recognition and full scene understanding. ConvNets consist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.02153 شماره
صفحات -
تاریخ انتشار 2017