Voltage-independent effects of extracellular K+ on the Na+ current and phase 0 of the action potential in isolated cardiac myocytes.

نویسندگان

  • D W Whalley
  • D J Wendt
  • C F Starmer
  • Y Rudy
  • A O Grant
چکیده

A rise in [K+]o, by depolarizing the resting membrane potential and partially inactivating the inward Na+ current (INa), is believed to play a critical role in slowing conduction during myocardial ischemia. In multicellular ventricular preparations, elevation of [K+]o has been suggested to decrease Vmax to a greater extent than expected from membrane depolarization alone. The mechanism of this voltage-independent effect of [K+]o is currently unknown, and its significance in single cardiac cells has not been determined. We have examined the voltage-independent effects of elevated [K+]o on INa and the action potential upstroke in isolated rabbit atrial and ventricular myocytes under voltage- and current-clamp conditions. Superfusate [K+] was varied from 5 mmol/L to 14 or 24 mmol/L, whereas [Na+] was maintained at 150 mmol/L. In cultured atrial cells and excised outside-out patches from freshly isolated atrial and ventricular cells, the amplitude and kinetics of INa were unchanged by elevation of [K+]o. In atrial cells, action potentials elicited from a holding potential of -70 mV had a similar Vmax (114.9 +/- 5.7 versus 112.2 +/- 4.8 V/s, mean +/- SEM, n = 6) and action potential amplitude (115.0 +/- 2.4 versus 113.4 +/- 3.9 mV) in 5 and 24 mmol/L [K+]o. In contrast, in ventricular cells at a holding potential of -70 mV, increasing [K+]o fro 5 to 14 mmol/L decreased Vmax from 161.8 +/- 18.0 to 55.3 +/- 5.0 V/s (n = 7, P < .001) and action potential amplitude from 128.1 +/- 1.3 to 86.6 +/- 5.4 mV (P < .001). This voltage-independent decrease in Vmax and action potential amplitude induced by elevated [K+]o was abolished in the presence of 1 mmol/L Ba2+, suggesting that it is attributable to an increased background K+ conductance. We conclude that elevation of [K+]o to levels expected during ischemia causes a marked voltage-independent depression of Vmax in ventricular cells, which may, in turn, contribute to the slowing of myocardial conduction characteristic of early ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternary Organic Amines Inhibit Na,K Pump Current in a Voltage-dependent Manner

The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na(+)-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na(+)-salt solution. Extracellular application of these quaternary amines competitively inhibited ...

متن کامل

Dependence of Na+-K+ pump current-voltage relationship on intracellular Na+, K+, and Cs+ in rabbit cardiac myocytes.

To examine effects of cytosolic Na+, K+, and Cs+ on the voltage dependence of the Na+-K+ pump, we measured Na+-K+ pump current (Ip) of ventricular myocytes voltage-clamped at potentials (Vm) from 100 to +60 mV. Superfusates were designed to eliminate voltage dependence at extracellular pump sites. The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concent...

متن کامل

Effect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria

Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...

متن کامل

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Electrophysiological investigation of the cellular effect of anethole, the chief constitute of anise, on F1 neuronal excitability in garden snail

Introduction: Anethole is the main constituent of Pimpinella anisum L. (anise), a herbaceous annual plant which has several therapeutic effects. In the folk medicine, anise is employed as an antiepileptic drug. Specifically, this study was focused on the cellular effect of anethole, an aromatic compound in essential oils from anise and camphor. Anethole has various physiological effects on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 75 3  شماره 

صفحات  -

تاریخ انتشار 1994