Activation of HLS1 by Mechanical Stress via Ethylene-Stabilized EIN3 Is Crucial for Seedling Soil Emergence

نویسندگان

  • Xing Shen
  • Yanli Li
  • Ying Pan
  • Shangwei Zhong
چکیده

The seeds of terrestrial flowering plants often start their life cycle in subterranean darkness. To protect the fragile apical meristematic tissues and cotyledons from mechanical injuries during soil penetration, dicotyledonous seedlings form an elegant apical hook at the top of the hypocotyl. The apical hook has been considered as an adaption structure to the subterranean environment. However, the role of the apical hook in seedling emergence and the molecular mechanism of apical hook formation under real-life conditions remain highly speculative. Here, we find that HOOKLESS 1 (HLS1), a critical gene in apical hook formation in Arabidopsis thaliana, is required for seedling emergence from the soil. When grown under soil, hls1 mutant exhibits severe emergence defects. By contrast, HLS1 overexpression in the hls1 background fully restores emergence defects and displays better emergence capacity than that of WT. Our results indicate that HLS1 transcription is stimulated in response to the mechanical stress of soil cover, which is dependent on the function of the transcription factors ETHYLENE INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1). Soil-conferred mechanical stress activates the ethylene signaling pathway to stabilize EIN3 by repressing the activity of the F-box proteins EBF1 and EBF2. These combined results reveal a signaling pathway in which plant seedlings transduce the mechanical pressure of soil cover to correctly modulate apical hook formation during soil emergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hormonal networks involved in apical hook development in darkness and their response to light

In darkness, the dicot seedlings produce an apical hook as result of differential cell division and extension at opposite sides of the hypocotyl. This hook protects the apical meristem from mechanical damage during seedling emergence from the soil. In darkness, gibberellins act via the DELLA-PIF (PHYTOCHROME INTERACTING FACTORs) pathway, and ethylene acts via the EIN3/EIL1 (ETHYLENE INSENSITIVE...

متن کامل

Seedlings Transduce the Depth and Mechanical Pressure of Covering Soil Using COP1 and Ethylene to Regulate EBF1/EBF2 for Soil Emergence

The survival of seed plants in natural environments requires the successful emergence from the soil. In this process, the ethylene signaling pathway is utilized by plants to sense and respond to the mechanical resistance of the soil. Here, we report that constitutive photomorphogenesis 1 (COP1), a central repressor of light signaling, is a key component required for seedlings to sense the depth...

متن کامل

Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis.

The apical hook is an essential structure that enables epigeal plants to protrude through the soil. Arabidopsis thaliana HOOKLESS1 (HLS1) is reported to be a key regulator of hook development and a direct target gene of the ethylene (ET)-activated transcription factors ETHYLENE INSENSITIVE3 (EIN3) and its close homolog EIN3-Like1. Previous research has shown that the phytohormones jasmonate (JA...

متن کامل

EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings.

The ability to switch from skotomorphogenesis to photomorphogenesis is essential for seedling development and plant survival. Recent studies revealed that COP1 and phytochrome-interacting factors (PIFs) are key regulators of this transition by repressing the photomorphogenic responses and/or maintaining the skotomorphogenic state of etiolated seedlings. Here we report that the plant hormone eth...

متن کامل

NO Promotes Seed Germination and Seedling Growth Under High Salt May Depend on EIN3 Protein in Arabidopsis

The gas molecule nitric oxide (NO) can cooperate with ethylene to tightly modulate plant growth and stress responses. One of the mechanism of their crosstalk is that NO is able to activate ethylene biosynthesis, possibly through post-translational modification of key enzymes such as ACC synthase and oxidase by S-nitrosylation. In this paper, we focus on the crosstalk of NO with ethylene signali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016