On Secret Sharing Schemes, Matroids and Polymatroids

نویسندگان

  • Jaume Martí-Farré
  • Carles Padró
چکیده

The complexity of a secret sharing scheme is defined as the ratio between the maximum length of the shares and the length of the secret. The optimization of this parameter for general access structures is an important and very difficult open problem in secret sharing. We explore in this paper the connections of this open problem with matroids and polymatroids. Matroid ports were introduced by Lehman in 1964. A forbidden minor characterization of matroid ports was given by Seymour in 1976. These results precede the invention of secret sharing by Shamir in 1979. Important connections between ideal secret sharing schemes and matroids were discovered by Brickell and Davenport in 1991. Their results can be restated as follows: every ideal secret sharing scheme defines a matroid, and its access structure is a port of that matroid. Our main result is a lower bound on the optimal complexity of access structures that are not matroid ports. Namely, by using the aforementioned characterization of matroid ports by Seymour, we generalize the result by Brickell and Davenport by proving that, if the length of every share in a secret sharing scheme is less than 3=2 times the length of the secret, then its access structure is a matroid port. This generalizes and explains a phenomenon that was observed in several families of access structures. In addition, we introduce a new parameter to represent the best lower bound on the optimal complexity that can be obtained by taking into account that the joint Shannon entropies of a set of random variables define a polymatroid. We prove that every bound that is obtained by this technique for an access structure applies to its dual as well. Finally, we present a construction of linear secret sharing schemes for the ports of the Vamos and the non-Desargues matroids. In this way new upper bounds on their optimal complexity are obtained, which are a contribution on the search of access structures whose optimal complexity lies between 1 and 3=2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymatroids and polyquantoids

When studying entropy functions of multivariate probability distributions, polymatroids and matroids emerge. Entropy functions of pure multiparty quantum states give rise to analogous notions, called here polyquantoids and quantoids. Polymatroids and polyquantoids are related via linear mappings and duality. Quantum secret sharing schemes that are ideal are described by selfdual matroids. Expan...

متن کامل

Polymatroids and polyquantoids

When studying entropy functions of multivariate probability distributions, polymatroids and matroids emerge. Entropy functions of pure multiparty quantum states give rise to analogous notions, called here polyquantoids and quantoids. Polymatroids and polyquantoids are related via linear mappings and duality. Quantum secret sharing schemes that are ideal are described by selfdual matroids. Expan...

متن کامل

A Note on Non-Perfect Secret Sharing

By using a recently introduced framework for non-perfect secret sharing, several known results on perfect secret sharing are generalized. Specifically, we discuss about ideal secret sharing schemes, constructions of efficient linear secret sharing schemes, and the search for lower bounds on the length of the shares. Similarly to perfect secret sharing, matroids and polymatroids are very useful ...

متن کامل

On Representable Matroids and Ideal Secret Sharing

In secret sharing, the exact characterization of ideal access structures is a longstanding open problem. Brickell and Davenport (J. of Cryptology, 1991) proved that ideal access structures are induced by matroids. Subsequently, ideal access structures and access structures induced by matroids have attracted a lot of attention. Due to the difficulty of finding general results, the characterizati...

متن کامل

Security Analysis of a Hash-Based Secret Sharing Scheme

Secret sharing schemes perform an important role in protecting se-cret by sharing it among multiple participants. In 1979, (t; n) threshold secret sharing schemes were proposed by Shamir and Blakley independently. In a (t; n) threshold secret sharing scheme a secret can be shared among n partic-ipants such that t or more participants can reconstruct the secret, but it can not be reconstructed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006