Correlation and Large-Scale Simultaneous Significance Testing
نویسنده
چکیده
Large-scale hypothesis testing problems, with hundreds or thousands of test statistics “zi” to consider at once, have become familiar in current practice. Applications of popular analysis methods such as false discovery rate techniques do not require independence of the zi’s, but their accuracy can be compromised in high-correlation situations. This paper presents computational and theoretical methods for assessing the size and effect of correlation in large-scale testing. A simple theory leads to the identification of a single omnibus measure of correlation for the zi’s order statistic. The theory relates to the correct choice of a null distribution for simultaneous significance testing, and its effect on inference.
منابع مشابه
The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملEAMA: Empirically adjusted meta-analysis for large-scale simultaneous hypothesis testing in genomic experiments
Recent developments in high throughput genomic assays have opened up the possibility of testing hundreds and thousands of genes simultaneously. However, adhering to the regular statistical assumptions regarding the null distributions of test statistics in such large-scale multiple testing frameworks has the potential of leading to incorrect significance testing results and biased inference. Thi...
متن کاملGlobal Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures
Driven by a wide range of contemporary applications, statistical inference for covariance structures has been an active area of current research in high-dimensional statistics. This paper provides a selective survey of some recent developments in hypothesis testing for high-dimensional covariance structures, including global testing for the overall pattern of the covariance structures and simul...
متن کاملMicroarrays, Empirical Bayes and the Two-Groups Model
The classic frequentist theory of hypothesis testing developed by Neyman, Pearson, and Fisher has a claim to being the Twentieth Century’s most influential piece of applied mathematics. Something new is happening in the Twenty-First Century: high throughput devices, such as microarrays, routinely require simultaneous hypothesis tests for thousands of individual cases, not at all what the classi...
متن کاملTest Power Reduction by Simultaneous Don’t Care Filling and Ordering of Test Patterns Considering Pattern Dependency
Estimating and minimizing the maximum power dissipation during testing is an important task in VLSI circuit realization since the power value affects the reliability of the circuits. Therefore during testing a methodology should be adopted to minimize power consumption. Test patterns generated with –D 1 option of ATALANTA contains don’t care bits (x bits). By suitable filling of don’t cares can...
متن کامل