Optimized Maximum Mean Discrepancy

نویسندگان

  • Dougal J. Sutherland
  • Hsiao-Yu Tung
  • Heiko Strathmann
  • Soumyajit De
  • Aaditya Ramdas
  • Alex Smola
  • Arthur Gretton
چکیده

We propose a method to optimize the representation and distinguishability of samples from two probability distributions, by maximizing the estimated power of a statistical test based on the maximum mean discrepancy (MMD). This optimized MMD is applied to the setting of unsupervised learning by generative adversarial networks (GAN), in which a model attempts to generate realistic samples, and a discriminator attempts to tell these apart from data samples. In this context, the MMD may be used in two roles: first, as a discriminator, either directly on the samples, or on features of the samples. Second, the MMD can be used to evaluate the performance of a generative model, by testing the model’s samples against a reference data set. In the latter role, the optimized MMD is particularly helpful, as it gives an interpretable indication of how the model and data distributions differ, even in cases where individual model samples are not easily distinguished either by eye or by classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy

We propose a method to optimize the representation and distinguishability of samples from two probability distributions, by maximizing the estimated power of a statistical test based on the maximum mean discrepancy (MMD). This optimized MMD is applied to the setting of unsupervised learning by generative adversarial networks (GAN), in which a model attempts to generate realistic samples, and a ...

متن کامل

Discrepancy between radiological and pathological size of renal masses

OBJECTIVE To investigate the differences between tumor sizes measured by preoperative computed tomography (CT) imaging and pathologic examination of surgical specimens in Chinese patients who received extirpative surgery for renal tumors. METHODS From September 2008 to September 2010, 204 patients with renal tumors treated in the Renji Hospital were enrolled in this study, and their clinicopa...

متن کامل

Testing Hypotheses by Regularized Maximum Mean Discrepancy

Do two data samples come from different distributions? Recent studies of this fundamental problem focused on embedding probability distributions into sufficiently rich characteristic Reproducing Kernel Hilbert Spaces (RKHSs), to compare distributions by the distance between their embeddings. We show that Regularized Maximum Mean Discrepancy (RMMD), our novel measure for kernel-based hypothesis ...

متن کامل

Detecting Change-Points in Time Series by Maximum Mean Discrepancy of Ordinal Pattern Distributions

As a new method for detecting change-points in high-resolution time series, we apply Maximum Mean Discrepancy to the distributions of ordinal patterns in different parts of a time series. The main advantage of this approach is its computational simplicity and robustness with respect to (non-linear) monotonic transformations, which makes it particularly well-suited for the analysis of long bioph...

متن کامل

Conditional Generative Moment-Matching Networks

Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment-matching networks (CGMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016