A result on fractional ID-[a, b]-factor-critical graphs

نویسندگان

  • Sizhong Zhou
  • Jie Wu
  • Quanru Pan
چکیده

A graphG is fractional ID-[a, b]-factor-critical ifG−I includes a fractional [a, b]-factor for every independent set I of G. In this paper, it is proved that if α(G) ≤ 4b(δ(G)−a+1) (a+1)2+4b , then G is fractional ID-[a, b]-factor-critical. Furthermore, it is shown that the result is best possible in some sense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A neighborhood condition for fractional ID-[a, b]-factor-critical graphs

A graph G is fractional ID-[a, b]-factor-critical if G − I has a fractional [a, b]-factor for every independent set I of G. We extend a result of Zhou and Sun concerning fractional ID-k-factor-critical graphs.

متن کامل

Degree Conditions of Fractional ID-k-Factor-Critical Graphs

We say that a simple graph G is fractional independent-set-deletable k-factor-critical, shortly, fractional ID-k-factor-critical, if G− I has a fractional k-factor for every independent set I of G. Some sufficient conditions for a graph to be fractional ID-k-factor-critical are studied in this paper. Furthermore, we show that the result is best possible in some sense. 2010 Mathematics Subject C...

متن کامل

A degree condition for graphs to be fractional ID-[a, b]-factor-critical

Let G be a graph of sufficiently large order n, and let a and b be integers with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑x∈e h(e) ≤ b holds for any x ∈ V (G), then G[Fh] is called a fractional [a, b]-factor of G with indicator function h, where Fh = {e ∈ E(G) | h(e) > 0}. A graph G is fractional independent-set-deletable [a, b]-factor-critical (simply, fractional ID-[a, b]-facto...

متن کامل

A remark about fractional (f, n)-critical graphs

Let G be a graph of order p, and let a, b and n be nonnegative integers with b ≥ a ≥ 2, and let f be an integer-valued function defined on V (G) such that a ≤ f(x) ≤ b for each x ∈ V (G). A fractional f -factor is a function h that assigns to each edge of a graph G a number in [0,1], so that for each vertex x we have dG(x) = f(x), where d h G(x) = ∑ e3x h(e) (the sum is taken over all edges inc...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2014