Rule base Knowledge and Fuzzy Approach for Classification of Specific Crop and Acreage Estimation
نویسندگان
چکیده
Estimation of specific crop and acreage plays a vital role in the field of crop planning, monitoring, crop condition, yield forecasting and acreage estimation. There have been several studies conducted to classify the crops at continental to the regional level, but still, work is needed to map small area covered by different crops using Remote Sensing technology. The main objective of the present study is to explore whether the Fuzzy classifier can improve the accuracy of crop classification as compared to other traditional Classifiers, such as Maximum likelihood, Mahalanobis etc. The attempt has been done to classify different crops at a smaller scale. The Landsat time series 8 band OLI data was used to investigate multiple crop phenomena. Two scenes were acquired in Kharif seasons (September 28 and October 30, 2014). Three indices such as NDVI, SAVI, and RVI, were used to know vegetation condition. The Spectral signatures generated from data for the residues of Sugarcane and Maize based on prior knowledge of the field work. Four techniques based on Maximum Likelihood, Mahalanobis Classifier, Knowledge classifier and fuzzy classification techniques were used to extract the crops information based on the signatures. The resulting overall classification accuracy was calculated using stratified random sampling method. The corresponding performance efficiency of these four methods was found to be 84%, 85%, 87% and 90.67%, respectively, indicating the fuzzy method to be the most efficient as compared with other classification techniques.
منابع مشابه
A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملEntropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
متن کاملImprovement of Rule Generation Methods for Fuzzy Controller
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...
متن کاملThe Use of Modis Data in Southern Russia for Crop Acreage Estimations and Inter-comparison of Results from Various Crop Acreage Estimation Methods
The first part of this paper presents a methodology on crop acreage estimations using the MODIS 16-day composite NDVI product. Particular emphasis is placed on a good quality crop mask and a good quality validation dataset. A novel approach which is based on the sampling of pure fields has been developed. The novel approach has been tested in previous work using a traditional maximum likelihood...
متن کاملFuzzy Inference System Approach in Deterministic Seismic Hazard, Case Study: Qom Area, Iran
Seismic hazard assessment like many other issues in seismology is a complicated problem, which is due to a variety of parameters affecting the occurrence of an earthquake. Uncertainty, which is a result of vagueness and incompleteness of the data, should be considered in a rational way. Using fuzzy method makes it possible to allow for uncertainties to be considered. Fuzzy inference system,...
متن کامل