Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener
نویسندگان
چکیده
Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.
منابع مشابه
A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.
Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using...
متن کاملA New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملStrategies for Target-Specific Contrast Agents for Magnetic Resonance Imaging.
This review describes recent research efforts focused on increasing the specificity of contrast agents for proton magnetic resonance imaging (MRI). Contrast agents play an indispensable role in MRI by enhancing the inherent contrast of images; however, the non-specific nature of current clinical contrast agents limits their usefulness. This limitation can be addressed by conjugating contrast ag...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملReview of current trends in enhancing bioavailability of poorly water soluble drugs by liposomal interventions
One of the several ways of enhancing the solubility of poorly soluble drugs is liposomes formulations. Research on liposomes formulations has progressed from that of conventional vesicles to new generation liposomes, such as cationic liposomes, temperature sensitive liposomes, and virosomes, by modulating the formulation techniques and lipid composition. Thermosensitive liposomes are also a pro...
متن کامل