External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica.

نویسندگان

  • S J Kerscher
  • A Eschemann
  • P M Okun
  • U Brandt
چکیده

Alternative NADH:ubiquinone oxidoreductases are single subunit enzymes capable of transferring electrons from NADH to ubiquinone without contributing to the proton gradient across the respiratory membrane. The obligately aerobic yeast Yarrowia lipolytica has only one such enzyme, encoded by the NDH2 gene and located on the external face of the mitochondrial inner membrane. In sharp contrast to ndh2 deletions, deficiencies in nuclear genes for central subunits of proton pumping NADH:ubiquinone oxidoreductases (complex I) are lethal. We have redirected NDH2 to the internal face of the mitochondrial inner membrane by N-terminally attaching the mitochondrial targeting sequence of NUAM, the largest subunit of complex I. Lethality of complex I mutations was rescued by the internal, but not the external version of alternative NADH:ubiquinone oxidoreductase. Internal NDH2 also permitted growth in the presence of complex I inhibitors such as 2-decyl-4-quinazolinyl amine (DQA). Functional expression of NDH2 on both sides of the mitochondrial inner membrane indicates that alternative NADH:ubiquinone oxidoreductase requires no additional components for catalytic activity. Our findings also demonstrate that shuttle mechanisms for the transfer of redox equivalents from the matrix to the cytosolic side of the mitochondrial inner membrane are insufficient in Y. lipolytica.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two aspartic acid residues in the PSST-homologous NUKM subunit of complex I from Yarrowia lipolytica are essential for catalytic activity.

Mitochondrial proton-translocating NADH:ubiquinone oxidoreductase (complex I) couples the transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the mitochondrial inner membrane. Subunit PSST is the most likely carrier of iron-sulfur cluster N2, which has been proposed to play a crucial role in ubiquinone reduction and proton pumping. To explore the functi...

متن کامل

The Deactive Form of Respiratory Complex I from Mammalian Mitochondria Is a Na+/H+ Antiporter*

In mitochondria, complex I (NADH:ubiquinone oxidoreductase) uses the redox potential energy from NADH oxidation by ubiquinone to transport protons across the inner membrane, contributing to the proton-motive force. However, in some prokaryotes, complex I may transport sodium ions instead, and three subunits in the membrane domain of complex I are closely related to subunits from the Mrp family ...

متن کامل

A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I.

Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination, the position of individual accessory subunit...

متن کامل

Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica.

Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I (NADH:ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex ha...

متن کامل

The Subunit Composition of Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I) From Pichia pastoris

Respiratory complex I (NADH:quinone oxidoreductase) is an entry point to the electron transport chain in the mitochondria of many eukaryotes. It is a large, multisubunit enzyme with a hydrophilic domain in the matrix and a hydrophobic domain in the mitochondrial inner membrane. Here we present a comprehensive analysis of the protein composition and post-translational modifications of complex I ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 114 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2001