Characterization of right-side-out membrane vesicles rich in (Na,K)-ATPase and isolated from dog kidney outer medulla.
نویسنده
چکیده
When purified on a sucrose gradient, basolateral membranes from dog kidney outer medulla are found to be very rich in (Na,K)-ATPase; about 50% of the membrane protein is comprised of this enzyme. (Na,K)-ATPase activity is activated 3- to 5-fold by detergent treatment, and this has been previously attributed to the impermeable vesicular nature of the membranes. Porcine trypsin inactivates only that fraction of (Na,K)-ATPase activity seen without detergent, consistent with a right-side-out orientation of membrane vesicles; the trypsin sensitivity and detergent activation of [3H]ouabain binding in the presence of Na+ + Mg2+ + ATP or Mg2+ + Pi are also consistent with this hypothesis. Using nearly isosmotic Hypaque density gradient centrifugation a population of impermeable right-side-out membrane vesicles (H1) is separated from a leaky population (H2). (Na,K)-ATPase activity in the H1 population is 20-fold activated by detergent and insensitive to porcine trypsin. The vesicle volume is 2.4 microliters/mg, and monovalent cations passively equilibrate with the intravesicular volume on a time scale of 5-30 min. Very rapid ouabain sensitive 22Na efflux from the vesicles is observed when ATP is photolytically released from intravesicular caged ATP.
منابع مشابه
Delivery of ion pumps from exogenous membrane-rich sources into mammalian red blood cells.
Using polyethylene glycol-mediated fusion of ATP-ase-enriched (native) microsomes with red blood cells, we have delivered sarcoplasmic reticulum (SR) Ca-ATPase and kidney Na,K-ATPase into the mammalian erythrocyte membrane. Experiments involving delivery of the SR Ca-ATPase into human red cells were first carried out to assess the feasibility of the fusion protocol. Whereas there was little det...
متن کاملUltrastructural localization of Na+,K+-ATPase in rat and rabbit kidney medulla
Na+,K+-ATPase was localized at the ultrastructural level in rat and rabbit kidney medulla. The cytochemical method for the K+-dependent phosphatase component of the enzyme, using p-nitrophenylphosphate (NPP) as substrate, was employed to demonstrate the distribution of Na+, K+-ATPase in tissue-chopped sections from kidneys perfusion-fixed with 1% paraformaldehyde-0.25% glutaraldehyde. In other ...
متن کاملUltrastructure of isolated sarcolemma from dog and rabbit myocardium. Comparison to intact tissue.
We compared the morphology of cardiac sarcolemmal membranes isolated from dog and rabbit hearts with the sarcolemma in intact cells, using freeze-fracture and thin-section electron microscopy. In addition, we estimated the sidedness of the isolated sarcolemma based on its freeze-fracture morphology and biochemical determinations of sialic acid content and Na,K-ATPase activity. The bilayer in is...
متن کاملSolubilization of Na,K-ATPase from rabbit kidney outer medulla using only C12E8.
SDS, C12E8, CHAPS or CHAPSO or a combination of two of these detergents is generally used for the solubilization of Na,K-ATPase and other ATPases. Our method using only C12E8 has the advantage of considerable reduction of the time for enzyme purification, with rapid solubilization and purification in a single chromatographic step. Na,K-ATPase-rich membrane fragments of rabbit kidney outer medul...
متن کاملTransport defects of rabbit medullary thick ascending limb cells in obstructive nephropathy.
To characterize the sodium transport defect responsible for salt wasting in obstructive nephropathy, the major sodium transporters in the medullary thick ascending limb (mTAL), the apical Na-K-2Cl cotransporter and the basolateral Na-K-ATPase, were studied in fresh suspensions of mTAL cells and outer medulla plasma membranes prepared from obstructed and untreated kidneys. Oxygen consumption (QO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 257 21 شماره
صفحات -
تاریخ انتشار 1982