PKC isozymes in the enhanced regrowth of retinal neurites after optic nerve injury.

نویسندگان

  • Da-Yu Wu
  • Jun-Qi Zheng
  • Marisa A McDonald
  • Bieshia Chang
  • Jeffery L Twiss
چکیده

PURPOSE To establish an in vitro model of axonal regeneration from mammalian retinal ganglion cells and to evaluate the role of PKC isozymes in promoting such retinal axon regeneration. METHODS Postnatal day-3 mice were subjected to optic nerve crush, and then retinal ganglion cells (RGCs) were used for culture 5 days later. RGCs were selected using anti-Thy 1.2-coated magnetic beads and plated onto a merosin substrate. Changes in axonal localization of PKC and axonal regeneration were examined in cultured RGCs by immunofluorescence. Changes in PKC isozyme mRNA levels were determined by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). The role of PKC in RGC neurite outgrowth was examined by treatment with activators or pharmacological inhibitors of PKC activity. RESULTS RGCs subjected to optic nerve crush injury demonstrated more rapid neurite outgrowth in vitro when compared with RGCs isolated from naïve retina. The neurites of these injury-conditioned RGCs showed both an increased rate of extension and enhanced PKC localization in culture. Injury-conditioned RGCs had elevated PKC isozyme mRNA levels, which probably contributed to the increased level of PKC protein in injury-conditioned RGC axons. Pharmacological activation of PKC enhanced neurite growth, whereas inhibition of PKC suppressed neurite growth in both the conditioned and naïve RGCs. CONCLUSIONS RGCs actively respond to axonal injury by regulating expression of genes that promote neurite outgrowth. PKC-alpha and -beta isozymes are among the growth-associated proteins that are upregulated after injury. Results of pharmacological manipulation of PKC activity support the argument that increased PKC levels enhance neurite regrowth after axonal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

FGF-2 modulates expression and distribution of GAP-43 in frog retinal ganglion cells after optic nerve injury.

Basic fibroblast growth factor (bFGF or FGF-2) has been implicated as a trophic factor that promotes survival and neurite outgrowth of neurons. We found previously that application of FGF-2 to the proximal stump of the injured axon increases retinal ganglion cell (RGC) survival. We determine here the effect of FGF-2 on expression of the axonal growth-associated phosphoprotein (GAP)-43 in retina...

متن کامل

Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration.

Fish CNS neurons can repair their axons following nerve injury, whereas mammalian CNS neurons cannot regenerate, and become apoptotic within 1-2 weeks after the nerve lesion. One explanation for these differences is that one, or several molecules are upregulated in fish CNS neurons during nerve regeneration, and this same molecule is downregulated in mammalian CNS neurons before the development...

متن کامل

P129: Use of Stem Cells to Regenerate Degenerative Optic Nerve

Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...

متن کامل

Reciprocal changes in factor XIII and retinal transglutaminase expressions in the fish retina during optic nerve regeneration.

Unlike mammals, fish retinal ganglion cells have the capacity to repair their axons even after optic nerve transection. In the process of fish optic nerve regeneration, a large number of genes have been described as regeneration-associated molecules. Using molecular cloning techniques, we identified two types of cDNA clones belonging to the transglutaminase (TG) family which were upregulation g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2003