A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations
نویسندگان
چکیده
Article history: Received 21 February 2012 Received in revised form 30 May 2012 Accepted 4 June 2012 Available online 16 June 2012
منابع مشابه
Semi-lagrangian Transport Algorithms for the Shallow Water Equations in Spherical Geometry
Global atmospheric circulation models (GCM) typically have three primary algorithmic components: columnar physics, spectral tran-form, and semi-Lagrangian transport. In this study, several varients of a SLT method are studied in the context of test cases for the shallow water equations in spherical geometry. A grid point formulation is used with implicit, semi-implicit or explicit time integrat...
متن کاملQuadrati Spline Galerkin Method for the Shallow Water Equations on the Sphere
Currently in most global meteorological applications, the spectral transform method or low-order finite difference/finite element methods are used. The spectral transform method, which yields high-order approximations, requires Legendre transforms. The Legendre transforms have a computational complexity of O(N3), where N is the number of subintervals in one dimension, and thus render the spectr...
متن کاملA flexible and efficient DG discretization for Numerical Weather Prediction
As a first step towards construction of a DG based dynamical core for high resolution atmospheric modelling, a semi-implicit and semi-Lagrangian discontinuous Galerkin method for the SWE on the sphere and for nonhydrostatic vertical slice equations is proposed and analysed. The method is equipped with a simple p-adaptivity criterion, that allows to adjust dynamically the number of degrees of fr...
متن کاملGPU Acceleration of a High-Order Discontinuous Galerkin Incompressible Flow Solver
We present a GPU-accelerated version of a high-order discontinuous Galerkin discretization of the unsteady incompressible Navier–Stokes equations. The equations are discretized in time using a semi-implicit scheme with explicit treatment of the nonlinear term and implicit treatment of the split Stokes operators. The pressure system is solved with a conjugate gradient method together with a full...
متن کاملWell-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations
In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 232 شماره
صفحات -
تاریخ انتشار 2013