Polymer-metal hybrid transparent electrodes for flexible electronics

نویسندگان

  • Hongkyu Kang
  • Suhyun Jung
  • Soyeong Jeong
  • Geunjin Kim
  • Kwanghee Lee
چکیده

Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of 'polymer-metal hybrid electrodes' with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq(-1). These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures.

Transparent electrodes that can remain electrically conductive and stable under large mechanical deformations are highly desirable for applications in flexible and wearable electronics. This paper describes a comprehensive study of the electrical, optical, and mechanical properties of hybrid nanostructures based on two-dimensional graphene and networks of one-dimensional metal nanowires, and th...

متن کامل

Flexible and transparent metallic grid electrodes prepared by evaporative assembly.

We propose a novel approach to fabricating flexible transparent metallic grid electrodes via evaporative deposition involving flow-coating. A transparent flexible metal grid electrode was fabricated through four essential steps including: (i) polymer line pattern formation on the thermally evaporated metal layer onto a plastic substrate; (ii) rotation of the stage by 90° and the formation of th...

متن کامل

Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

Flexible transparent electrodes (FTEs) with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO) served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transpa...

متن کامل

Highly Conductive Transparent Organic Electrodes with Multilayer Structures for Rigid and Flexible Optoelectronics

Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative...

متن کامل

Realization of metal-insulator transition and oxidation in silver nanowire percolating networks by terahertz reflection spectroscopy.

Metal nanowires (NWs) enable versatile applications in printed electronics and optoelectronics by serving as thin and flexible transparent electrodes. The performance of metal NWs as thin electrodes is highly correlated to the connectivity of NW meshes. The percolation threshold of metal NW films corresponds to the minimum density of NWs to form the transparent, yet conductive metal NW networks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015