Regularity Properties of a Semismooth Reformulation of Variational Inequalities
نویسندگان
چکیده
Variational inequalities over sets defined by systems of equalities and inequalities are considered. A new reformulation of the KKT-conditions of the variational inequality as a system of equations is proposed. A related unconstrained minimization reformulation is also investigated. As a by-product of the analysis, a new characterization of strong regularity of KKT-points is given.
منابع مشابه
Using exact penalties to derive a new equation reformulation of KKT systems associated to variational inequalities
In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We also develop a s...
متن کاملA Semismooth Newton Method for Variational Inequalities: Theoretical Results and Preliminary Numerical Experience
Variational inequalities over sets deened by systems of equalities and inequalities are considered. A continuously diierentiable merit function is proposed whose unconstrained minima coincide with the KKT-points of the variational inequality. A detailed study of its properties is carried out showing that under mild assumptions this reformulation possesses many desirable features. A simple algor...
متن کاملA Gauss-Newton Approach for Solving Constrained Optimization Problems Using Differentiable Exact Penalties
We propose a Gauss-Newton-type method for nonlinear constrained optimization using the exact penalty introduced recently by André and Silva for variational inequalities. We extend their penalty function to both equality and inequality constraints using a weak regularity assumption, and as a result, we obtain a continuously differentiable exact penalty function and a new reformulation of the KKT...
متن کاملA QP-free constrained Newton-type method for variational inequality problems
We consider a simply constrained optimization reformulation of the KarushKuhn-Tucker conditions arising from variational inequalities. Based on this reformulation, we present a new Newton-type method for the solution of variational inequalities. The main properties of this method are: (a) it is well-defined for an arbitrary variational inequality problem, (b) it is globally convergent at least ...
متن کاملVector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 8 شماره
صفحات -
تاریخ انتشار 1998