First-principles assessment of hole transport in pure and Li-doped NiO.
نویسندگان
چکیده
Alloying nickel oxide (NiO) with lithium oxide (Li2O) at high Li concentrations may reduce NiO's band gap and expand its use as a light absorber in photocatalytic and tandem dye-sensitized solar cell technologies. In this work, we evaluate the viability of this alloy as a p-type hole transport material. We use embedded cluster models, along with unrestricted Hartree-Fock and complete active space self-consistent field theories, to study the impact of alloying on polaronic transport of holes. Our calculated energy barrier for hole transfer in undoped NiO is in excellent agreement with the experimental value of ∼0.1 eV. We predict that hole transport in NiO is anisotropic and mostly confined parallel to the (111) ferromagnetic planes. Applying the same model to Li-doped NiO indicates that isolated Li ions do not introduce free holes into NiO samples. However, free holes can be created in the homogeneous Li0.125Ni0.875O alloy, in which the Li concentration is very high. Our kinetic Monte Carlo calculations show that hole mobility in this alloy is lower than in undoped NiO. However, the additional free holes and the predicted lower band gap of Li0.125Ni0.875O should increase hole conductivity compared to NiO upon alloy formation. Therefore, Li0.125Ni0.875O alloys have potential for use as a hole transporter, as well as a sunlight absorber, in a variety of solar energy applications.
منابع مشابه
Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures.
Ultraselective and sensitive detection of xylene and toluene with minimum interferences of other indoor air pollutants such as benzene, ethanol, and formaldehyde is achieved using NiO hierarchical nanostructures doped with Cr. Pure and 1.15-2.56 at% Cr-doped NiO flower-like hierarchical nanostructures assembled from nanosheets are prepared by a simple solvothermal reaction and their gas sensing...
متن کاملReduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu3+,Tb3+ coated TiO2 film
Eu(3+),Tb(3+) doped and undoped NiO films were deposited on TiO2 by a sol-gel spin-coating method as the photoanodes of dye sensitized solar cells (DSSCs). A comparative study with different structures including TiO2, TiO2/NiO and TiO2/NiO:Eu(3+),Tb(3+) as the photoanodes was carried out to illustrate the photovoltaic performance of solar cells. NiO could enhance the performance of DSSCs ascrib...
متن کاملCytotoxicity effects of synthesized ZnO and Zn0.97X0.03O (X=Li, Na, and K) nanoparticles by the gelatin-based sol-gel method
Objective: In this study we would like to report the synthesis of pure and group I element doping of ZnO nanoparticles (ZnO-NPs) prepared using gelatin. The use of natural polymers for the preparation of the pure and doped nanoparticles can result in achieving low cost and eco-friendly advantages.Materials and Method: Pure and doped ZnO-NPs were obtained at 500 °C and The cytotoxicity of nanopa...
متن کاملRevisiting the valence-band and core-level photoemission spectra of NiO.
We have reexamined the valence-band (VB) and core-level electronic structure of NiO by means of hard and soft x-ray photoemission spectroscopies. The spectral weight of the lowest energy state was found to be enhanced in the bulk sensitive Ni 2p core-level spectrum. A configuration-interaction model including a bound state screening has shown agreement with the core-level spectrum and off- and ...
متن کاملA study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane.
Nb-doped nickel oxides with Nb contents in the range from 1 to 20% and, for comparison, pure NiO, were characterized using in situ electrical conductivity measurements in correlation with their catalytic performances for the oxidative dehydrogenation (ODH) of ethane into ethylene. Their electrical conductivity was studied as a function of temperature and oxygen partial pressure and was followed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 27 شماره
صفحات -
تاریخ انتشار 2015