Molecular Cardiology The Bispecific SDF1-GPVI Fusion Protein Preserves Myocardial Function After Transient Ischemia in Mice

نویسندگان

  • Melanie Ziegler
  • Yvonne Baumer
  • Tanja Schönberger
  • Meinrad Gawaz
چکیده

Background—CXCR4-positive bone marrow cells (BMCs) are critically involved in cardiac repair mechanisms contributing to preserved cardiac function. Stromal cell–derived factor-1 (SDF-1) is the most prominent BMC homing factor known to augment BMC engraftment, which is a limiting step of stem cell–based therapy. After myocardial infarction, SDF-1 expression is rapidly upregulated and promotes myocardial repair. Methods and Results—We have established a bifunctional protein consisting of an SDF-1 domain and a glycoprotein VI (GPVI) domain with high binding affinity to the SDF-1 receptor CXCR4 and extracellular matrix proteins that become exposed after tissue injury. SDF1-GPVI triggers chemotaxis of CXCR4-positive cells, preserves cell survival, enhances endothelial differentiation of BMCs in vitro, and reveals proangiogenic effects in ovo. In a mouse model of myocardial infarction, administration of the bifunctional protein leads to enhanced recruitment of BMCs, increases capillary density, reduces infarct size, and preserves cardiac function. Conclusions—These results indicate that administration of SDF1-GPVI may be a promising strategy to treat myocardial infarction to promote myocardial repair and to preserve cardiac function. (Circulation. 2012;125:685-696.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bispecific SDF1-GPVI fusion protein preserves myocardial function after transient ischemia in mice.

BACKGROUND CXCR4-positive bone marrow cells (BMCs) are critically involved in cardiac repair mechanisms contributing to preserved cardiac function. Stromal cell-derived factor-1 (SDF-1) is the most prominent BMC homing factor known to augment BMC engraftment, which is a limiting step of stem cell-based therapy. After myocardial infarction, SDF-1 expression is rapidly upregulated and promotes my...

متن کامل

The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice.

Platelets play a critical role in the pathophysiology of reperfusion, sepsis, and cardiovascular diseases. In a multiple step process, they adhere to activated endothelium and release proinflammatory cytokines thereby promoting the inflammatory process. Glycoprotein VI (GPVI) is the major collagen receptor on the platelet surface and triggers platelet activation and primary hemostasis. Activati...

متن کامل

Serial Myocardial Imaging after a Single Dose of Thallium-201

Although thallium-201 exercise scintigraphy has been established for the detection of myocardial ischemia and viability, little is known regarding the myocardial thallium-201 kinetics during angioplasty. Herein, we report a 77-year old man with angina pectoris, in whom serial myocardial imaging after a single dose of thallium-201 was helpful in identifying not only the culprit lesion and myocar...

متن کامل

Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice

Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) wit...

متن کامل

Inhibition of Platelet GPVI Protects Against Myocardial Ischemia-Reperfusion Injury.

OBJECTIVE The objective of this study was to investigate the effects of platelet inhibition on myocardial ischemia-reperfusion (IR) injury. APPROACH AND RESULTS Timely restoration of coronary blood flow after myocardial infarction is indispensable but leads to additional damage to the heart (myocardial IR injury). Microvascular dysfunction contributes to myocardial IR injury. We hypothesized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012