Receptivity of a supersonic boundary layer over a flat plate . Part 2 . Receptivity to free - stream sound
نویسنده
چکیده
In this paper, we continue to study the mechanisms of the receptivity of the supersonic boundary layer to free-stream disturbances by using both direct numerical simulation and linear stability theory. Specifically, the receptivity of a Mach 4.5 flow over a flat plate to free-stream fast acoustic waves is studied. The receptivity to free-stream slow acoustic waves, entropy waves and vorticity waves will be studied in the future. The oblique shock wave induced by the boundary-layer displacement plays an important role in the receptivity because the free-stream disturbance waves first pass through the shock before entering the boundary layer. A high-order shock-fitting scheme is used in the numerical simulations in order to account for the effects of interactions between free-stream disturbance waves and the oblique shock wave. The results show that the receptivity of the flat-plate boundary layer to free-stream fast acoustic waves leads to the excitation of both Mack modes and a family of stable modes, i.e. mode I, mode II, etc. It is found that the forcing fast acoustic waves do not interact directly with the unstable Mack modes. Instead, the stable mode I waves play an important role in the receptivity process because they interact with both the forcing acoustic waves and the unstable Mack-mode waves. Through the interactions, the stable mode I waves transfer wave energy from the forcing fast acoustic waves to the second Mack-mode waves. The effects of incident wave angles, forcing wave frequencies, and wall temperature perturbation conditions on the receptivity are studied. The results show that the receptivity mechanisms of the second mode are very different from those of modes I and II, which leads to very different receptivity properties of these discrete wave modes to free-stream fast acoustic waves with different incident wave angles, frequencies, and different wall boundary conditions. The maximum receptivities of the second mode, mode I and mode II to planar free-stream fast acoustic waves are obtained when incident wave angles approximately equal 26◦, 45◦, and 18◦, respectively. The results of receptivity to a beam of free-stream fast acoustic waves show that the leading edge is one of the most efficient regions for receptivity.
منابع مشابه
Receptivity of a supersonic boundary layer over a flat plate . Part 1 . Wave structures and interactions
This paper is the first part of a two-part study on the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST). The main objective of the current paper is to study the linear stability characteristics of the boundary-layer wave modes and their mutual resonant interactions. The numerica...
متن کاملStability of Supersonic Boundary Layers Over Blunt Wedges
Receptivity and stability of supersonic boundary layers over blunt flat plates and wedges are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10/inch. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization a...
متن کاملNumerical Simulation of Hypersonic Boundary-Layer Receptivity to Three-Dimensional Wall Perturbations
The receptivity of a hypersonic boundary layer to three-dimensional wall perturbations is investigated in this paper by numerical simulations. The work is motivated by Tumin’s [1] theoretical analysis on the receptivity of compressible boundary layers to three-dimensional wall perturbations with the help of the biorthogonal eigenfunction system. Specifically, receptivity processes of a Mach 5.9...
متن کاملEffect of wall perturbations on the receptivity of a hypersonic boundary layer
The receptivity of a Mach 5.92 flat plate boundary layer to periodic two-dimensional wall perturbations is studied by numerical simulations and linear stability theory LST . Free stream flow conditions are the same as the leading edge receptivity experiment of Maslov et al., J. Fluid Mech. 426, 73 2001 . Steady base flow is simulated by solving compressible Navier–Stokes equations with a combin...
متن کاملTransition In A Supersonic Boundary Layer Due To Acoustic Disturbances
The boundary layer receptivity process due to the interaction of threedimensional slow and fast acoustic disturbances with a blunted flat plate is numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 106/inch. The computations are performed with and without two-dimensional isolated roughness element located near the leading edge. Both the steady and unst...
متن کامل