Tree-mycorrhizal associations detected remotely from canopy spectral properties.

نویسندگان

  • Joshua B Fisher
  • Sean Sweeney
  • Edward R Brzostek
  • Tom P Evans
  • Daniel J Johnson
  • Jonathan A Myers
  • Norman A Bourg
  • Amy T Wolf
  • Robert W Howe
  • Richard P Phillips
چکیده

A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high-resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across ~130 000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P < 0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data

This study presents a new method of detecting individual treetops from lidar data and applies marker-controlled watershed segmentation into isolating individual trees in savanna woodland. The treetops were detected by searching local maxima in a canopy maxima model (CMM) with variable window sizes. Different from previous methods, the variable windows sizes were determined by the lower-limit of...

متن کامل

Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have becomepopular in recent years. However, the linkages between camera phenological metrics and leaf bioche...

متن کامل

Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest.

We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling...

متن کامل

Ecosystem Functioning and Plant-Soil Interactions in Forests Influences of quality and diversity of resources

The aim of this thesis was to investigate the role of resources in driving ecosystem processes and in influencing soil-and plant communities in boreal and temperate forests, through four complementary experimental studies. In the first study, plant and soil microbial responses to the quality and diversity of added organic substrates from boreal forests were investigated. The substrate-diversity...

متن کامل

Deciduous Forest Structure Estimated with LIDAR-Optimized Spectral Remote Sensing

Coverage and frequency of remotely sensed forest structural information would benefit from single orbital platforms designed to collect sufficient data. We evaluated forest structural information content using single-date Hyperion hyperspectral imagery collected over full-canopy oak-hickory forests in the Ozark National Forest, Arkansas, USA. Hyperion spectral derivatives were used to develop m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Global change biology

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2016