Development of a Nonlinear Piezoelectric Energy Harvester for Alternating Air Load
نویسندگان
چکیده
The demand for energy-harvesting technology is steadily growing in the field of self-powered wireless sensor systems for use in pneumatic systems. The purpose of this research was to study an energy harvester excited by alternating air load in a pneumatic system. The harvester was designed to consist of a power chamber and a compressed chamber, and to the bottom of the power chamber a piezoelectric patch as been affixed. The harvester is excited by the changing pressure, which can be adjusted through changing volume, and the alternating air pressure energy can be harvested through the deformation of the piezoelectric patch. A test system was built and a prototype device was tested under various experimental conditions. The test results show that the energy generation performance of the harvester can be influenced by varying the volume compression parameters, with the output voltage increasing when the flow increases. The maximal output voltage and power are 24.7 V and 1.06 mW, respectively. An effective power of 0.28 mW was measured across the 200 kΩ resistor at a pressure of 200 kPa and a cycle time of 2.5 s with a flow of 150 L/min.
منابع مشابه
An Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کاملResonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester
The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...
متن کاملAutonomous Wireless Heat Energy Meter based on Piezoelectric Energy Harvester for Heat Energy Measurement in Building Complexes
This paper presents a platform for power autonomous wireless energy meter device using piezoelectric energy harvesters. This device can be mainly used for measuring the share of heat energy consumption in a fair manner in building complex with central heat energy system. In the suggested device, the piezoelectric energy harvester is also used as a flow-meter to reduce the power consumption of t...
متن کاملVibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator—High Frequency Piezoelectric Energy Harvester
Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced...
متن کاملShape Design Optimization of Unimorph Piezoelectric Cantilever Energy Harvester
The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectri...
متن کامل