The Iterated Sigma Point Kalman Filter with Applications to Long Range Stereo
نویسندگان
چکیده
This paper investigates the use of statistical linearization to improve iterative non-linear least squares estimators. In particular, we look at improving long range stereo by filtering feature tracks from sequences of stereo pairs. A novel filter called the Iterated Sigma Point Kalman Filter (ISPKF) is developed from first principles; this filter is shown to achieve superior performance in terms of efficiency and accuracy when compared to the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Gauss-Newton filter. We also compare the ISPKF to the optimal Batch filter and to a Gauss-Newton Smoothing filter. For the long range stereo problem the ISPKF comes closest to matching the performance of the full batch MLE estimator. Further, the ISPKF is demonstrated on real data in the context of modeling environment structure from long range stereo data.
منابع مشابه
Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملNew Algorithms Based on Sigma Point Kalman Filter Technique for Multi-sensor Integrated RFID Indoor/Outdoor Positioning
The demand for seamless positioning has been significantly high. The methods of providing continuous indoor/outdoor positions seamlessly and the algorithms for smoothly transferring the estimation of positions from multiple positioning systems have attracted a great interest in the Location Based Services (LBS) research community. Most seamless positioning techniques are based on integrated met...
متن کاملLiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter. Sensors 2017, 17, 539
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper prese...
متن کاملPrice Bubbles Spillover among Asset Markets: Evidence from Iran
T his paper investigates the existence of possible spillover effects among four main asset markets namely foreign exchange, stock, gold, and housing markets in Iran from 2002:03 to 2015:06. For this purpose, we have exploited Sigma-Point Kalman Filter (SPKF) to extract the bubble component of assets prices in the aforementioned Markets. Then, in order to analyze the price bubbles spi...
متن کاملSigma Point Kalman Filter for Underwater Terrain-based Navigation
Precise underwater navigation is crucial in a number of marine applications. Navigation of most autonomous underwater vehicles (AUVs) is based on inertial navigation. Such navigation systems drift off with time and external fixes are needed. This paper concentrates on one such method, namely terrain based navigation, where position fixes are found by comparing measurements with a prior map. Non...
متن کامل